$$ \newcommand{\arccot}{\operatorname{arccot}} \newcommand{\arcsec}{\operatorname{arcsec}} \newcommand{\arccsc}{\operatorname{arccsc}} $$

How to Differentiate with Inverse Trig Functions

Quick Overview

$$ \begin{array}{lcl} \frac d {dx}\left(\sin^{-1} x\right) = \displaystyle \frac 1 {\sqrt{1-x^2}} &&&& \frac d {dx}\left(\cos^{-1} x\right) = \displaystyle \frac{-1}{\sqrt{1-x^2}}\\[18pt] \frac d {dx}\left(\tan^{-1} x\right) = \displaystyle \frac 1 {1+x^2} &&&& \frac d {dx}\left(\cot^{-1} x\right) = \displaystyle \frac{-1}{1+x^2}\\[18pt] \frac d {dx}\left(\sec^{-1} x\right) = \displaystyle \frac 1 {|x|\sqrt{x^2 -1}} &&&& \frac d {dx}\left(\csc^{-1} x\right) = \displaystyle \frac{-1}{|x|\sqrt{x^2 -1}} \end{array} $$

Alternate Notation

Sometimes the inverse trig functions are notated with "arc" in front of their names rather than the superscript "-1". The table below shows both names for each function.

$$ \begin{array}{lcl} \sin^{-1} x = \arcsin x &&&& \cos^{-1} x = \arccos x\\[6pt] \tan^{-1} x = \arctan x &&&& \cot^{-1} x = \arccot x\\[6pt] \sec^{-1} x = \arcsec x &&&& \csc^{-1} x = \arccsc x\\[6pt] \end{array} $$

Examples

Example 1

Suppose $$f(x) = \sin^{-1} 9x$$. Find $$f'(x)$$.

Step 1

Differentiate using the chain rule.

$$ \begin{align*} f'(x) & = \frac 1 {\sqrt{1 - (9x)^2}} \cdot \frac d {dx}\left(9x\right)\\[6pt] & = \frac 1 {\sqrt{1 - 81x^2}} \cdot 9\\[6pt] & = \frac 9 {\sqrt{1 - 81x^2}} \end{align*} $$

Answer

$$\displaystyle f'(x) = \frac 9 {\sqrt{1-81x^2}}$$

Example 2

Find $$\displaystyle \frac d {dx}\left(x^2\arctan 6x\right)$$.

Step 1

Identify the factors that make up the function.

$$ \frac d {dx}\left(\blue{x^2}\,\red{\arctan 6x}\right) $$

Step 2

Differentiate using the product rule.

$$ \begin{align*} \frac d {dx}\left(x^2\arctan x\right) & = \blue{2x}\arctan x + x^2\cdot \red{\frac 1 {1 + (6x)^2}\cdot 6}\\[6pt] & = 2x\arctan x + \frac{6x^2}{1 + 36x^2} \end{align*} $$

Answer

$$\displaystyle \frac d {dx}\left(x^2\arctan 6x\right) = 2x\arctan x + \frac{6x^2}{1 + 36x^2}$$.

Example 3

Suppose $$\displaystyle f(x) = \frac{8x}{\arccsc 12x}$$. $$f'\left(\frac 1 6\right)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are related to the numerator.

$$ \begin{align*} f'(x) & = \frac{(\arccsc 12x)\cdot \blue 8 - \blue{8x}\cdot \frac{-1}{|12x|\sqrt{(12x)^2-1}}\cdot 12}{\arccsc^2 12x} \end{align*} $$

Step 2

Simplify.

$$ \begin{align*} f'(x) & = \frac{(\arccsc 12x)\cdot 8 - 8x\cdot \frac{-1}{|12x|\sqrt{(12x)^2-1}}\cdot 12}{\arccsc^2 12x}\\[6pt] & = \frac{8\arccsc 12x + \frac{8x\cdot 12}{12|x|\sqrt{144x^2-1}}}{\arccsc^2 12x}\\[6pt] & = \frac{8\arccsc 12x + \frac{8x}{|x|\sqrt{144x^2-1}}}{\arccsc^2 12x}\cdot \blue{\frac{|x|\sqrt{144x^2-1}}{|x|\sqrt{144x^2-1}}}\\[6pt] & = \frac{8\arccsc 12x\cdot |x|\sqrt{144x^2-1} + 8x}{\arccsc^2 12x\cdot |x|\sqrt{144x^2-1}}\\[6pt] & = \frac{8x + 8|x|\sqrt{144x^2-1}\cdot\arccsc 12x}{|x|\sqrt{144x^2-1}\cdot\arccsc^2 12x} \end{align*} $$

Step 3

Evaluate at $$x = \frac 1 6$$

$$ \begin{align*} f'(\blue{1/6}) & = \frac{8(\blue{1/6}) + 8|\blue{1/6}|\sqrt{144(\blue {1/6})^2-1}\cdot\arccsc (12\cdot\blue{1/6})}{|\blue {1/6}|\sqrt{144(\blue {1/6})^2-1}\cdot\arccsc^2 (12\cdot \blue{1/6})}\\[6pt] & = \frac{\frac 8 6 + \frac 8 6\sqrt{144\left(\frac 1 {36}\right)-1}\cdot\arccsc 2}{\frac1 6\sqrt{144\left(\frac 1 {36}\right)-1}\cdot(\arccsc 2)^2}\\[6pt] & = \frac{8 + 8\sqrt{4-1}\cdot\frac \pi 6}{\sqrt{4-1}\cdot\left(\frac\pi 6\right)^2}\\[6pt] & = \frac{8 + 8\sqrt 3\cdot\frac \pi 6}{\sqrt 3\cdot\frac{\pi^2}{36}}\\[6pt] & = \frac{8 + \frac{4\pi} 3\sqrt 3}{\frac{\pi^2}{36}\sqrt 3}\\[6pt] & = \frac{288 + 48\pi\sqrt 3}{\pi^2\sqrt 3}\\[6pt] & = \frac{288\sqrt 3 + 144\pi}{3\pi^2}\\[6pt] & = \frac{96\sqrt 3 + 48\pi}{\pi^2} \end{align*} $$

Answer

$$\displaystyle f'\left(\frac 1 6\right) = \frac{96\sqrt 3 + 48\pi}{\pi^2}$$

Example 4

Suppose $$f(x) = \sqrt[3]{\cot^{-1} 7x}$$. Find $$f'(x)$$.

Step 1

Rewrite the cube root as an exponent.

$$ f(x) = \left(\cot^{-1} 7x\right)^{1/3} $$

Step 2

Differentiate using the chain rule as appropriate.

$$ \begin{align*} f'(x) & = \frac 1 3 \left(\cot^{-1} 7x\right)^{-2/3}\cdot \frac d {dx}\left(\cot^{-1} 7x\right)\\[6pt] & = \frac 1 3 \left(\cot^{-1} 7x\right)^{-2/3}\cdot \frac{-1}{1 + (7x)^2}\cdot \frac d {dx}(7x)\\[6pt] & = \frac 1 3 \left(\cot^{-1} 7x\right)^{-2/3}\cdot \frac{-1}{1 + 49x^2}\cdot 7 \end{align*} $$

Step 3

Simplify.

$$ \begin{align*} f'(x) & = \frac 1 3 \left(\cot^{-1} 7x\right)^{-2/3}\cdot \frac{-1}{1 + 49x^2}\cdot 7\\[6pt] & = \left(\cot^{-1} 7x\right)^{-2/3}\cdot \frac{-7}{3\left(1 + 49x^2\right)}\\[6pt] & = \frac 1 {\left(\cot^{-1} 7x\right)^{2/3}}\cdot \frac{-7}{3\left(1 + 49x^2\right)}\\[6pt] & = \frac{-7} {3\left(1 + 49x^2\right)\sqrt[3]{\left(\cot^{-1} 7x\right)^2}} \end{align*} $$

Answer

$$\displaystyle f'(x) = \frac{-7} {3\left(1 + 49x^2\right)\sqrt[3]{\left(\cot^{-1} 7x\right)^2}}$$.

Continue to Practice Problems
Download this web page as a pdf with answer key

back to How to Find Derivatives of Inverse Functions next to How to Differentiate Logarithmic Functions

Ultimate Math Solver (Free)

Free Algebra Solver ... type anything in there!