How to Differentiate with Inverse Trig Functions - 10 Practice Problems explained step by step with interactive problems, showing all work.
$$ \newcommand{\arccot}{\operatorname{arccot}} \newcommand{\arcsec}{\operatorname{arcsec}} \newcommand{\arccsc}{\operatorname{arccsc}} $$

How to Differentiate with Inverse Trig Functions:
Practice Problems

Download this web page as a pdf with answer key
Problem 1

Suppose $$f(x) = \arcsin 2x$$. Find $$f'(1/4)$$.

Step 1

Use the formula for the derivative of the inverse sine.

$$f'(x) = \frac 1 {\sqrt{1 - (2x)^2}}\cdot \frac d {dx}(2x) = \frac 2 {\sqrt{1 - 4x^2}}$$

Step 2

Evaluate $$f'(1/4)$$

$$ \begin{align*} f'(1/4) & = \frac 2 {\sqrt{1 - 4\left(\frac 1 4\right)^2}}\\[6pt] & = \frac 2 {\sqrt{1 - 4\left(\frac 1 {16}\right)}}\\[6pt] & = \frac 2 {\sqrt{1 - \frac 1 4}}\\[6pt] & = \frac 2 {\sqrt{\frac 3 4}}\\[6pt] & = \frac 2 {\frac{\sqrt 3}{\sqrt 4}}\\[6pt] & = \frac 2 1 \cdot \frac{\sqrt 4}{\sqrt 3}\\[6pt] & = \frac 2 1 \cdot \frac 2 {\sqrt 3}\\[6pt] & = \frac 4 {\sqrt 3}\\[6pt] & = \frac{4\sqrt 3} 3 \end{align*} $$

Answer

$$\displaystyle f'(1/4) = \frac{4\sqrt 3} 3$$

Problem 2

Suppose $$f(x) = \arccos(x^2-3)$$. Find $$f'(x)$$.

Step 1

Use the formula for the derivative of the inverse cosine with the chain rule.

$$ \begin{align*} f'(x) & = \frac{-1}{\sqrt{1 - (x^2 - 3)^2}}\cdot \frac d {dx}\left(x^2 - 3\right)\\[6pt] & = \frac{-1}{\sqrt{1 - (x^2 - 3)^2}}\cdot \left(2x\right)\\[6pt] & = \frac{-2x}{\sqrt{1 - (x^2 - 3)^2}} \end{align*} $$

Answer

$$\displaystyle f'(x) = \frac{-2x}{\sqrt{1 - (x^2 - 3)^2}}$$

Problem 3

Suppose $$f(x) = \cot^{-1} 15x$$. Find $$f'(x)$$.

Step 1

Use the formula for the derivative of the inverse cotangent along with the chain rule.

$$ \begin{align*} f'(x) & = \frac{-1}{1+(15x)^2}\cdot \frac d {dx}(15x)\\[6pt] & = \frac{-1}{1+225x^2}\cdot (15)\\[6pt] & = \frac{-15}{1+225x^2} \end{align*} $$

Answer

$$ \displaystyle f'(x) = -\frac{15}{1+225x^2} $$

Problem 4

Suppose $$f(x) = \sec^{-1} \frac 3 x$$. Find $$f'(x)$$.

Step 1

Use the formula for the derivative of the inverse secant along with the chain rule.

$$ \begin{align*} f'(x) & = \frac 1 {\left|\frac 3 x\right|\sqrt{\left(\frac 3 x\right)^2 - 1}}\cdot \frac d {dx}\left(\frac 3 x\right)\\[6pt] & = \frac 1 {\frac 3{|x|}\sqrt{\frac 9 {x^2} - 1}}\cdot \frac d {dx}\left(3x^{-1}\right)\\[6pt] & = \frac 1 {\frac 3{|x|}\sqrt{\frac 9 {x^2} - 1}}\cdot \left(-3x^{-2}\right) \end{align*} $$

Step 2

Simplify.

$$ \begin{align*} f'(x) & = \frac 1 {\frac 3{|x|}\sqrt{\frac 9 {x^2} - 1}}\cdot \left(-3x^{-2}\right)\\[6pt] & = \frac 1 {\frac 3{|x|}\sqrt{\frac 9 {x^2} - 1}}\cdot \left(\frac{-3}{x^2}\right)\\[6pt] & = \frac{-3}{\frac 3{|x|}\cdot x^2\sqrt{\frac 9 {x^2} - 1}}\\[6pt] & = \frac{-3}{3|x|\sqrt{\frac 9 {x^2} - 1}}\\[6pt] & = \frac{-1}{|x|\sqrt{\frac 1 {x^2}(9 - x^2)}}\\[6pt] & = \frac{-1}{|x|\sqrt{\frac 1 {x^2}}\cdot\sqrt{9 - x^2}}\\[6pt] & = \frac{-1}{|x|\cdot\frac 1 {\sqrt{x^2}}\cdot\sqrt{9 - x^2}}\\[6pt] & = \frac{-1}{|x|\cdot\frac 1 {|x|}\cdot\sqrt{9 - x^2}}\\[6pt] & = \frac{-1}{\sqrt{9 - x^2}} \end{align*} $$

Answer

$$\displaystyle f'(x) = \frac{-1}{\sqrt{9 - x^2}}$$

Problem 5

Suppose $$f(x) = x^{1/2}\arctan 9x$$. Find $$f'(1/9)$$.

Step 1

Identify the factors that make up the function.

$$ f(x) = \blue{x^{1/2}}\,\red{\arctan 9x} $$

Step 2

Differentiate using the product rule.

$$ \begin{align*} f'(x) & = \blue{\frac 1 2 x^{-1/2}}\arctan 9x + x^{1/2}\cdot \red{\frac 1 {1 + (9x)^2}\cdot 9} \end{align*} $$

Step 3

Simplify.

$$ \begin{align*} f'(x) & = \frac 1 2 \blue{x^{-1/2}}\arctan 9x + \blue{x^{1/2}}\cdot \frac 9 {1 + 81x^2}\\[6pt] & = \blue{x^{-1/2}}\left(\red{\frac 1 2} \arctan 9x + x\cdot \frac{\red 9}{1 + 81x^2}\right)\\[6pt] & = \red{\frac 1 2}x^{-1/2}\left(\arctan 9x + \frac{18x}{1 + 81x^2}\right)\\[6pt] & = \frac 1 {2x^{1/2}}\left(\arctan 9x + \frac{18x}{1 + 81x^2}\right)\\[6pt] & = \frac 1 {2\sqrt x}\left(\arctan 9x + \frac{18x}{1 + 81x^2}\right) \end{align*} $$

Step 4

Evaluate $$f'(1/9)$$.

$$ \begin{align*} f'\left(\blue{\frac 1 9}\right) & = \frac 1 {2\sqrt{\blue{\frac 1 9}}}\left(\arctan\left(9\cdot \blue{\frac 1 9}\right) + \frac{18\cdot \blue{\frac 1 9}}{1 + 81\left(\blue{\frac 1 9}\right)^2}\right)\\[6pt] & = \frac 1 {2\cdot \frac 1 3}\left(\arctan(1) + \frac 2 {1 + 81\left(\frac 1 {81}\right)}\right)\\[6pt] & = \frac 1 {2/3}\left(\frac \pi 4+ \frac 2 {1 + 1}\right)\\[6pt] & = \frac 3 2\left(\frac \pi 4 + 1\right)\\[6pt] & = \frac{3\pi} 8 + \frac 3 2\\[6pt] & \approx 2.678 \end{align*} $$

Answer

$$\displaystyle f'(1/9) = \frac{3\pi} 8 + \frac 3 2 \approx 2.678$$

Problem 6

Suppose $$f(x) = x^3\arccsc 4x$$. Find $$f'(x)$$

Step 1

Identify the factors that make up the function.

$$ f(x) = \blue{x^3}\,\red{\arccsc 4x} $$

Step 2

Differentiate using the product rule.

$$ \begin{align*} f'(x) & = \blue{3x^2}\arccsc 4x + x^3\cdot\red{\frac{-4}{|4x|\sqrt{(4x)^2-1}}} \end{align*} $$

Step 3

Simplify.

$$ \begin{align*} f'(x) & = 3x^2\arccsc 4x + x^3\cdot\frac{-4}{|4x|\sqrt{(4x)^2-1}}\\[6pt] & = 3x^2\arccsc 4x - \frac{4x^3}{4|x|\sqrt{16x^2-1}}\\[6pt] & = 3x^2\arccsc 4x - \frac{x^3}{|x|\sqrt{16x^2-1}} \end{align*} $$

Answer

$$ \displaystyle f'(x) = 3x^2\arccsc 4x - \frac{x^3}{|x|\sqrt{16x^2-1}} $$

Problem 7

Suppose $$f(x) = (7x+3)^{12}\cos^{-1} 2x$$. Find $$f'(x)$$.

Step 1

Identify the factors the make up the function.

$$ f(x) = \blue{(7x+3)^{12}}\,\red{\cos^{-1} 2x} $$

Step 2

Differentiate using the product rule.

$$ \begin{align*} f'(x) & = \blue{12(7x+3)^{11}\cdot 7}\,\cos^{-1} 2x + (7x+3)^{12}\cdot\red{\frac 1 {\sqrt{1 - (2x)^2}}\cdot 2} \end{align*} $$

Step 3

Simplify.

$$ \begin{align*} f'(x) & = 12(7x+3)^{11}\cdot 7\,\cos^{-1} 2x + (7x+3)^{12}\cdot\frac 1 {\sqrt{1 - (2x)^2}}\cdot 2\\[6pt] & = 84\blue{(7x+3)^{11}}\,\cos^{-1} 2x + \blue{(7x+3)^{12}}\cdot\frac 2 {\sqrt{1 - 4x^2}}\\[6pt] & = \blue{(7x+3)^{11}}\left(\red{84}\,\cos^{-1} 2x + (7x+3)\cdot\frac{\red 2}{\sqrt{1 - 4x^2}}\right)\\[6pt] & = \red 2 (7x+3)^{11}\left(42\,\cos^{-1} 2x + (7x+3)\cdot\frac 1 {\sqrt{1 - 4x^2}}\right)\\[6pt] & = 2 (7x+3)^{11}\left(42\,\cos^{-1} 2x + \frac{7x+3}{\sqrt{1 - 4x^2}}\right) \end{align*} $$

Answer

$$\displaystyle f'(x) = 2 (7x+3)^{11}\left(42\,\cos^{-1} 2x + \frac{7x+3}{\sqrt{1 - 4x^2}}\right)$$

Problem 8

Suppose $$f(x) = \sin 3x\,\tan^{-1} 6x$$. Find $$f'(x)$$.

Step 1

Identify the factors that make up the function.

$$ f(x) = \blue{\sin 3x}\,\red{\tan^{-1} 6x} $$

Step 2

Differentiate using the product rule.

$$ \begin{align*} f'(x) & = \blue{3\cos 3x}\,\tan^{-1} 6x + \sin 3x\cdot\red{\frac 1 {1 + (6x)^2}\cdot 6} \end{align*} $$

Step 3

Simplify.

$$ \begin{align*} f'(x) & = 3\cos 3x\,\tan^{-1} 6x + \frac{6\sin 3x}{1 + 36x^2} \end{align*} $$

Answer

$$\displaystyle f'(x) = 3\cos 3x\,\tan^{-1} 6x + \frac{6\sin 3x}{1 + 36x^2}$$

Problem 9

Suppose $$f(x) = \arccot\left(\frac{x+4}{x-5}\right)$$. Find $$f'(2)$$.

Step 1

Differentiate with the chain rule.

$$ \begin{align*} f'(x) & = \frac{-1}{1 + \left(\frac{x+4}{x-5}\right)^2}\cdot \frac d {dx}\left(\frac{x+4}{x-5}\right) \end{align*} $$

Step 2

Differentiate the quotient with the quotient rule. The parts in $$\blue{blue}$$ are related to the numerator.

$$ \begin{align*} f'(x) & = \frac{-1}{1 + \left(\frac{x+4}{x-5}\right)^2}\cdot \frac{(x-5)\cdot \blue 1 - \blue{(x+4)}\cdot 1}{(x-5)^2} \end{align*} $$

Step 3

Simplify.

$$ \begin{align*} f'(x) & = \frac{-1}{1 + \left(\frac{x+4}{x-5}\right)^2}\cdot \frac{(x-5) - (x+4)}{(x-5)^2}\\[6pt] & = \frac{-1}{1 + \frac{(x+4)^2}{(x-5)^2}}\cdot \frac{x-5 - x-4}{(x-5)^2}\\[6pt] & = \frac{-1}{1 + \frac{(x+4)^2}{(x-5)^2}}\cdot \frac{-9}{(x-5)^2}\\[6pt] & = \frac{9}{(x-5)^2 + (x+4)^2}\\[6pt] \end{align*} $$

Step 4

Evaluate $$f'(2)$$.

$$ \begin{align*} f'(\blue 2) & = \frac{9}{(\blue 2-5)^2 + (\blue 2+4)^2}\\[6pt] & = \frac{9}{(-3)^2 + 6^2}\\[6pt] & = \frac{9}{9 + 36}\\[6pt] & = \frac 9 {45}\\[6pt] & = \frac 1 5 \end{align*} $$

Answer

$$ f'(2) = \frac 1 5 $$

Problem 10

Suppose $$\displaystyle f(x) = \frac{2x}{\arcsec 4x}$$. Find $$f'(x)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are related to the numerator.

$$ \begin{align*} f'(x) & = \frac{(\arcsec 4x)\cdot \blue 2 - \blue{2x}\cdot \frac 1 {|4x|\sqrt{(4x)^2-1}}\cdot 4}{(\arcsec 4x)^2} \end{align*} $$

Step 2

Simplify.

$$ \begin{align*} f'(x) & = \frac{(\arcsec 4x)\cdot 2 - 2x \cdot \frac 1 {|4x|\sqrt{(4x)^2-1}}\cdot 4}{(\arcsec 4x)^2}\\[6pt] & = \frac{2\arcsec 4x - \frac{8x}{4|x|\sqrt{16x^2-1}}}{(\arcsec 4x)^2}\\[6pt] & = \frac{2\arcsec 4x - \frac{2x}{|x|\sqrt{16x^2-1}}}{(\arcsec 4x)^2}\cdot \blue{\frac{|x|\sqrt{16x^2-1}}{|x|\sqrt{16x^2-1}}}\\[6pt] & = \frac{2|x|\arcsec 4x\cdot\sqrt{16x^2-1} - 2x}{|x|(\arcsec 4x)^2\sqrt{16x^2-1}} \end{align*} $$

Answer

$$ \displaystyle f'(x) = \frac{2|x|\arcsec 4x\cdot\sqrt{16x^2-1} - 2x}{|x|(\arcsec 4x)^2\sqrt{16x^2-1}} $$

Return to lesson
Download this web page as a pdf with answer key

back to How to Find Derivatives of Inverse Functions next to How to Differentiate Logarithmic Functions

Ultimate Math Solver (Free)

Free Algebra Solver ... type anything in there!