How to Differentiate Inverse Functions
$$ \newcommand{\arccot}{\operatorname{arccot}} \newcommand{\arcsec}{\operatorname{arcsec}} \newcommand{\arccsc}{\operatorname{arccsc}} $$

How to Differentiate Inverse Functions

Download this web page as a pdf with answer key

Quick Overview

  • $$\displaystyle \frac d {dx}\left(\ln x\right) = \frac 1 x$$
  • $$\displaystyle \frac d {dx}\left(\arcsin x\right) = \frac 1 {\sqrt{1 - x^2}}$$
  • $$\displaystyle \frac d {dx}\left(\arctan x\right) = \frac 1 {1 + x^2}$$
  • $$\displaystyle \frac d {dx}\left(\arcsec x\right) = \frac 1 {|x|\sqrt{x^2-1}}$$
  • At associated points, the value of $$f'$$ and $$\left(f^{-1}\right)'$$ are reciprocals.

Examples

Example 1

Find the derivative of $$y = \ln x$$.

Step 1

Recall that $$e^{\ln x} = x$$. Now, differentiate both sides of this equation.

$$ \begin{align*} \frac d {dx}\left(e^{\ln x}\right) & = \frac d {dx}(x)\\[6pt] e^{\ln x}\cdot \frac d {dx}\left(\ln x\right) & = 1\\[6pt] \end{align*} $$

Step 2

Solve the equation for $$\frac d {dx}(\ln x)$$ and simplify.

$$ \begin{align*} e^{\ln x}\cdot \frac d {dx}\left(\ln x\right) & = 1\\[6pt] \frac d {dx}\left(\ln x\right) & = \frac 1 {e^{\ln x}}\\[6pt] \frac d {dx}\left(\ln x\right) & = \frac 1 x \end{align*} $$

Answer

$$\displaystyle \frac d {dx}\left(\ln x\right) = \frac 1 x$$

Example 2

Find the derivative of $$y = \sin^{-1}(x)$$.

Step 1

Recall that $$\sin\left(\sin^{-1} x \right) = x$$. Now, differentiate both sides of the equation.

$$ \begin{align*} \frac d {dx}\left(\sin(\sin^{-1} x)\right) & = \frac d {dx} (x)\\[6pt] \cos(\sin^{-1} x)\cdot \frac d {dx}\left(\sin^{-1} x\right) & = 1 \end{align*} $$

Step 2

Solve the equation for $$\frac d {dx}(\sin^{-1} x)$$

$$ \begin{align*} \cos(\sin^{-1} x)\cdot \frac d {dx}\left(\sin^{-1} x\right) & = 1\\[6pt] \frac d {dx}\left(\sin^{-1} x\right) & = \frac 1 {\cos(\sin^{-1} x)} \end{align*} $$

Step 3

Recall that $$\sin^{-1} x = \theta$$ is the angle where $$\sin \theta = \frac x 1$$. Find the cosine of this angle.

On a right-triangle, the cosine is $$\frac{\mbox{adjacent}}{\mbox{hypotenuse}}$$. We can find the adjacent side using the pythagorean theorem.

From this, we can see that $$\cos\theta = \frac {\sqrt{1-x^2}} 1 = \sqrt{1-x^2}$$.

Step 4

Finish evaluating the derivative.

$$ \frac d {dx}\left(\sin^{-1} x\right) = \frac 1 {\cos(\sin^{-1} x)} = \frac 1 {\cos(\theta)} = \frac 1 {\sqrt{1 - x^2}} $$

Answer

$$\displaystyle \frac d {dx}\left(\sin^{-1} x\right) = \frac 1 {\sqrt{1 - x^2}}$$.

Example 3

Find $$\displaystyle \frac d {dx}\left(\tan^{-1} x\right)$$.

Step 1

Recall that $$\tan\left(\tan^{-1} x\right) = x$$. Differentiate both sides of this equation.

$$ \begin{align*} \frac d {dx}\left(\tan(\tan^{-1} x)\right) & = \frac d {dx} (x)\\[6pt] \sec^2\left(\tan^{-1} x\right)\cdot \frac d {dx}\left(\tan^{-1} x\right) & = 1 \end{align*} $$

Step 2

Solve the equation for $$\frac d {dx}\left(\tan^{-1} x\right)$$

$$ \begin{align*} \sec^2\left(\tan^{-1} x\right)\cdot \frac d {dx}\left(\tan^{-1} x\right) & = 1\\[6pt] \frac d {dx}\left(\tan^{-1} x\right) & = \frac 1 {\sec^2\left(\tan^{-1} x\right)} \end{align*} $$

Step 3

Recall that $$\tan^{-1} x = \theta$$ is the angle where $$\tan \theta = \frac x 1$$. Find the secant of this angle.

If we sketch a right triangle and label the sides so $$\tan \theta = \frac x 1$$, we can then use the pythagorean theorem to find the length of the third side.

We're looking for the $$\sec \theta$$ which, on a right-triangle is $$\frac{\mbox{hypotenuse}}{\mbox{adjacent}}$$.

$$\sec \theta = \frac{\sqrt{1+x^2}} 1 = \sqrt{x^2 + 1}$$

Step 4

Finish evaluating the derivative.

$$ \begin{align*} \frac d {dx}\left(\tan^{-1} x\right) & = \frac 1 {\sec^2\left(\tan^{-1} x\right)}\\[6pt] & = \frac 1 {\sec^2\left(\theta\right)}\\[6pt] & = \frac 1 {\left(\sec \theta \right)^2}\\[6pt] & = \frac 1 {\left(\sqrt{1+x^2}\right)^2}\\[6pt] & = \frac 1 {1+x^2} \end{align*} $$

Answer

$$ \displaystyle \frac d {dx}\left(\tan^{-1} x\right) = \frac 1 {1+x^2} $$

Example 4

Find $$\displaystyle \frac d {dx}\left(\sec^{-1} x\right)$$.

Step 1

Recall that $$\sec\left(\sec^{-1} x\right) = x$$. Differentiate this equation.

$$ \begin{align*} \frac d {dx} \left(\sec(\sec^{-1} x)\right) & = \frac d {dx} (x)\\[6pt] \sec\left(\sec^{-1} x\right)\tan\left(\sec^{-1} x\right)\cdot \frac d {dx}\left(\sec^{-1} x\right) & = 1 \end{align*} $$

Step 2

Solve the equation for $$\frac d {dx}\left(\sec^{-1} x\right)$$.

$$ \begin{align*} \sec\left(\sec^{-1} x\right)\tan\left(\sec^{-1} x\right)\cdot \frac d {dx}\left(\sec^{-1} x\right) & = 1\\[6pt] \frac d {dx}\left(\sec^{-1} x\right) & = \frac 1 {\sec\left(\sec^{-1} x\right)\tan\left(\sec^{-1} x\right)} \end{align*} $$

We know that $$\sec(\sec^{-1} x) = x$$, so the derivative at this point becomes

$$ \frac d {dx}\left(\sec^{-1} x\right) = \frac 1 {x\,\tan\left(\sec^{-1} x\right)} $$

Step 3

We know that $$\sec^{-1} x = \theta$$ is the angle where $$\sec \theta = \frac x 1$$. Use right-triangles to determine $$\tan\theta$$.

There are two cases to consider: when $$x$$ is positive, and when $$x$$ is negative.

Case 1: $$x$$ is Positive

When $$x$$ is positive, $$\tan \theta = \sqrt{x^2-1}$$.

This means

$$\frac d {dx}\left(\sec^{-1}x\right) = \frac 1 {x\sqrt{x^2-1}}$$

Case 2: $$x$$ is Negative

When $$x$$ is negative, $$\tan\theta = -\sqrt{x^2-1}$$.

This means

$$\frac d {dx}\left(\sec^{-1}x\right) = \frac 1 {-x\sqrt{x^2-1}}$$

but since $$x<0$$ we know $$-x>0$$

In both cases, the square-root in the denominator is multiplied by a positive value. We can indicate this succinctly by using the absolute value.

$$\frac d {dx}\left(\sec^{-1}x\right) = \frac 1 {|x|\sqrt{x^2-1}}$$

The Derivatives of Inverse Functions Theorem

Recall that when we compose a function and its inverse we have $$f\left( f^{-1}(x)\right) = x$$. If we differentiate both sides of this equation (using the chain rule on the left side) we get the following.

$$ \begin{align*} \frac d {dx}\left[f\left(f^{-1}(x)\right)\right] & = \frac d {dx} (x)\\[6pt] % f'\left(f^{-1}(x)\right)\cdot \left(f^{-1}\right)'(x) & = 1 \end{align*} $$

When we solve this equation for $$\left(f^{-1}\right)'(x)$$ we get a formula for finding derivatives of inverse functions.

$$ \left(f^{-1}\right)'(x) = \frac 1 {f'\left(f^{-1}(x)\right)} $$

Example 5

Suppose $$f(8) = 11$$ and $$f'(8) = 4$$. What is the value of $$\left(f^{-1}\right)'(11)$$?

Step 1

Since $$(8,11)$$ is a point on the graph of $$f$$, we know $$(11,8)$$ is on the graph of $$f^{-1}$$. Then the derivatives at these two point must be reciprocals, so

$$ \left(f^{-1}\right)'(11) = \frac 1 4 $$

Practice Problems

Problem 1

Find $$\displaystyle \frac d {dx}\left(\log_b x\right)$$.

Step 1

Convert the logarithm to the natural log using the change of base formula.

$$\frac d {dx} \left(\log_b x\right) = \frac d {dx}\left(\frac{\ln x}{\ln b}\right)$$

Step 2

Since $$\ln b$$ is a constant, factor it out.

$$ \frac d {dx}\left(\frac{\ln x}{\ln b}\right) = \frac 1 {\ln b}\,\cdot\frac d {dx}\left(\ln x\right) $$

Step 3

Use the result from Example 1 to differentiate the natural log.

$$ \frac 1 {\ln b}\,\cdot\frac d {dx}\left(\ln x\right) = \frac 1 {\ln b} \cdot \frac 1 x = \frac 1 {(\ln b) x} $$

Answer

$$\displaystyle \frac d {dx}\left(\log_b x\right) = \frac 1 {(\ln b) x}$$

Problem 2

Find $$\displaystyle \frac d {dx}\left(\cos^{-1}x\right)$$.

Step 1

Recall that $$\cos(\cos^{-1} x) = x$$. Differentiate this equation.

$$ \begin{align*} \frac d {dx}\left(\cos(\cos^{-1} x)\right) = \frac d {dx} (x)\\[6pt] -\sin(\cos^{-1} x)\cdot \frac d {dx}\left(\cos^{-1} x\right) = 1 \end{align*} $$

Step 2

Solve the equation for $$\frac d {dx}\left(\cos^{-1} x\right)$$.

$$ \frac d {dx}\left(\cos^{-1} x\right) = \frac 1 {-\sin(\cos^{-1} x)} $$

Step 3

Recall that $$\cos^{-1} x = \theta$$ is the angle where $$\cos \theta = \frac x 1$$. Find the sine of this angle.

We figure out the length of the third side using the pythagorean theorem. From this we can determine that $$\sin\theta = \sqrt{1-x^2}$$.

Step 4

Finish evaluating the derivative.

$$ \begin{align*} \frac d {dx}\left(\cos^{-1} x\right) & = \frac 1 {-\sin(\cos^{-1} x)}\\[6pt] & = \frac 1 {-\sin(\theta)}\\[6pt] & = \frac 1 {-\sqrt{1-x^2}} \end{align*} $$

Answer

$$\displaystyle \frac d {dx}\left(\cos^{-1} x\right) = -\frac 1 {\sqrt{1-x^2}}$$

Problem 3

Find $$\displaystyle \frac d {dx}\left(\cot^{-1}x\right)$$.

Step 1

Recall that $$\cot(\cot^{-1} x) = x$$. Differentiate this equation.

$$ \begin{align*} \frac d {dx}\left(\cot(\cot^{-1} x)\right) & = \frac d {dx}(x)\\[6pt] -\csc^2\left(\cot^{-1} x\right)\cdot \frac d {dx}\left(\cot^{-1} x\right) & = 1 \end{align*} $$

Step 2

Solve this equation for $$\frac d {dx}\left(\cot^{-1} x\right)$$.

$$ \frac d {dx}\left(\cot^{-1} x\right) = \frac 1 {-\csc^2\left(\cot^{-1} x\right)} $$

Step 3

We know that $$\cot^{-1} x = \theta$$ is the angle where $$\cot \theta = \frac x 1$$. Find the cosecant of this angle.

After using the Pythagorean theorem to find the third side, we can now see that $$\csc \theta = \sqrt{1+x^2}$$.

Step 4

Finish evaluating the derivative.

$$ \begin{align*} \frac d {dx}\left(\cot^{-1} x\right) & = \frac 1 {-\csc^2\left(\cot^{-1} x\right)}\\[6pt] & = \frac 1 {-\csc^2 \theta}\\[6pt] & = \frac 1 {-(\csc \theta)^2}\\[6pt] & = \frac 1 {-(\sqrt{1+x^2})^2}\\[6pt] & = \frac 1 {-(1+x^2)} \end{align*} $$

Answer

$$ \displaystyle \frac d {dx}\left(\cot^{-1} x\right) = -\frac 1 {1+x^2} $$

Problem 4

Find $$\displaystyle \frac d {dx}\left(\csc^{-1}x\right)$$.

Step 1

Recall that $$\csc(\csc^{-1} x) = x$$. Differentiate this equation.

$$ \begin{align*} \frac d {dx}\left(\csc(\csc^{-1} x)\right) & = \frac d {dx}(x)\\[6pt] -\csc\left(\csc^{-1} x\right)\cot\left(\csc^{-1} x\right)\cdot \frac d {dx}\left(\csc^{-1} x\right) & = 1 \end{align*} $$

Step 2

Solve this equation for $$\frac d {dx}\left(\csc^{-1} x\right)$$.

$$ \frac d {dx}\left(\csc^{-1} x\right) = \frac 1 {-\csc\left(\csc^{-1} x\right)\cot\left(\csc^{-1} x\right)} $$

We know that $$\csc(\csc^{-1} x) = x$$ so our derivative becomes

$$\frac d {dx}\left(\csc^{-1} x\right) = \frac{-1}{x\cot\left(\csc^{-1} x\right)}$$

Step 3

We know that $$\csc^{-1} x = \theta$$ is the angle where $$\csc \theta = \frac x 1$$. We need to find $$\cot \theta$$. There are two cases we need to examine: when $$x$$ is positive, and when $$x$$ is negative.

Case 1: $$x$$ is Positive

When $$x$$ is positive, $$\cot \theta = \sqrt{x^2 -1}$$.

This means

$$\frac d {dx}\left(\csc^{-1}x\right) = \frac{-1}{x\sqrt{x^2-1}}$$

Case 2: $$x$$ is Negative

When $$x$$ is negative, $$\cot\theta = -\sqrt{x^2-1}$$.

This means

$$\frac d {dx}\left(\csc^{-1}x\right) = \frac{-1}{-x\sqrt{x^2-1}}$$

but since $$x<0$$ we know $$-x>0$$

In both cases, the square-root in the denominator is multiplied by a positive value. We can express this more succinctly by using the absolute value.

$$\frac d {dx}\left(\csc^{-1}x\right) = \frac{-1}{|x|\sqrt{x^2-1}}$$

Answer

$$\displaystyle \frac d {dx}\left(\csc^{-1}x\right) = \frac{-1}{|x|\sqrt{x^2-1}}$$

Problem 5

Suppose $$f(3) = 2$$ and $$f'(3) = \frac 1 5$$. What is $$(f^{-1})'(2)$$?

Step 1

Since $$f(3) = 2$$, we know $$f^{-1}(2) = 3$$. This means $$f'(3)$$ and $$(f^{-1})'(2)$$ are reciprocals. Since $$f'(3) = \frac 1 5$$, we know $$(f^{-1})'(2) = 5$$.

Answer

$$(f^{-1})'(2) = 5$$

Problem 6

Suppose $$f(15) = -7$$ and $$f'(15) = 6$$. What is $$(f^{-1})'(-7)$$?

Step 1

Since $$f(15) = -7$$ then $$f^{-1}(-7) = 15$$. This means $$f'(15)$$ and $$(f^{-1})'(-7)$$ are reciprocals. Since $$f'(15)=6$$, we know $$(f^{-1})'(-7) = \frac 1 6$$.

Answer

$$\displaystyle (f^{-1})'(-7)= \frac 1 6$$

Download this web page as a pdf with answer key

back to How to Find Derivatives of Hyperbolic Trig Functions next to How to Differentiate with Inverse Trigonometric Functions

Ultimate Math Solver (Free)

Free Algebra Solver ... type anything in there!