How to Use the Chain Rule for Derivatives - 20 Practice Problems explained step by step with interactive problems, showing all work.

How to Use the Chain Rule for Derivatives:
Practice Problems

Download this web page as a pdf with answer key
Problem 1

Suppose $$f(x) = \sin(1-6x)$$. Find $$f'(x)$$.

Step 1

Differentiate using the chain rule.

$$f'(x) = \cos(\blue{1-6x})\cdot \blue{(-6)} = -6\cos(1-6x)$$

Answer

$$f'(x) = -6\cos(1-6x)$$

Problem 2

Suppose $$f(x) = 6\cos(4x^3)$$. Find $$f'(x)$$.

Step 1

Differentiate with the chain rule.

$$ f'(x) = 6\cos(\blue{4x^3})\cdot \blue{(12x^2)} = 72x^2\cos(4x^3) $$

Answer

$$f'(x) = 72x^2\cos(4x^3)$$

Problem 3

Suppose $$f(x) = \tan(\sqrt x)$$. Find $$f'\left(\frac 1 4\right)$$.

Step 1

Rewrite the square-root with an exponent.

$$ f(x) = \tan(x^{1/2}) $$

Step 2

Differentiate using the chain rule.

$$ f'(x) = \sec^2(\blue{x^{1/2}})\cdot \blue{\left(\frac 1 2 x^{-1/2}\right)} = \frac 1 2 x^{-1/2}\sec^2(x^{1/2}) $$

Step 3

(Optional) Rewrite the derivative using radicals. Rationalize the denominator.

$$ \begin{align*} f'(x) & = \frac 1 2 x^{-1/2}\sec^2(x^{1/2})\\[6pt] & = \frac 1 {2x^{1/2}}\, \sec^2(\sqrt x)\\[6pt] & = \frac 1 {2\sqrt x}\, \sec^2(\sqrt x)\\[6pt] & = \frac{\sqrt x}{2x}\,\sec^2(\sqrt x)\\[6pt] & = \frac{\sqrt x\,\sec^2(\sqrt x)}{2x} \end{align*} $$

Step 4

Evaluate $$f'\left(\frac 1 4\right)$$

$$ \begin{align*} f'\left(\frac 1 4\right) & = \frac{\sqrt{1/4}\,\sec^2(\sqrt{1/4})}{2(1/4)}\\[6pt] & = \frac{\frac 1 2\,\sec^2(1/2)}{1/2}\\[6pt] & = \sec^2(1/2)\\[6pt] & \approx 1.298 \end{align*} $$

Answer

$$ f'\left(\frac 1 4\right) = \sec^2(1/2) \approx 1.298 $$

Problem 4

Suppose $$f(x) = 2\cot(7x^2+3x)$$. Find $$f'(x)$$.

Step 1

Differentiate using the chain rule.

$$ f'(x) = 2\left(-\csc^2(\blue{7x^2+3x})\right)\cdot \blue{(14x + 3)} = -2(14x+3)\csc^2(7x^2+3x) $$

Answer

$$f'(x) = -2(14x+3)\csc^2(7x^2+3x)$$

Problem 5

Suppose $$f(x) = \sec(\sin x)$$. Find $$f'(x)$$.

Step 1

Differentiate using the chain rule.

$$ f'(x) = \sec(\blue{\sin x})\tan(\blue{\sin x})\cdot \blue{\cos x} $$

Answer

$$f'(x) = \sec(\sin x)\tan(\sin x)\cdot \cos x$$

Problem 6

Use the chain rule to determine $$\displaystyle \frac d {dx}\left(\csc x\right)$$

Step 1

Rewrite the cosecant in terms of the sine.

$$ \frac d {dx}\left(\csc x\right) = \frac d {dx}\left(\frac 1 {\sin x}\right) = \frac d {dx}\left([\sin x]^{-1}\right) $$

Step 2

Differentiate using the chain rule.

$$ \frac d {dx}\left([\sin x]^{-1}\right) = -1[\blue{\sin x}]^{-2}\cdot \blue{\cos x} = -\frac{\cos x}{\sin^2 x} $$

Step 3

Simplify by separating into separate fractions and using trigonometric identities.

$$ \begin{align*} \frac d {dx}\left(\csc x\right) & = -\frac{\cos x}{\sin^2 x}\\[6pt] & = -\frac 1 {\sin x}\cdot \frac {\cos x}{\sin x}\\[6pt] & = -\csc x\cot x \end{align*} $$

Answer

$$ \displaystyle \frac d {dx}\left(\csc x\right) = -\csc x\cot x $$

Problem 7

Suppose $$f(x) = e^{8x-4}$$. Find $$f'(1/2)$$.

Step 1

Differentiate with the chain rule.

$$ f'(x) = e^{\blue{8x-4}}\cdot \blue{8} = 8e^{8x-4} $$

Step 2

Evaluate $$f'(1/2)$$

$$ f'(1/2) = 8e^{8(1/2)-4} = 8e^{4-4} =8e^0 = 8(1) = 8 $$

Answer

$$f'(1/2) = 8$$

Problem 8

Suppose $$f(x) = e^{-x^2}$$. Find $$f'(x)$$.

Step 1

Differentiate using the chain rule.

$$ f'(x) = e^{\blue{-x^2}}\cdot \blue{(-2x)} = -2xe^{-x^2} $$

Answer

$$f'(x) = -2xe^{-x^2}$$

Problem 9

Suppose $$f(x) = \sqrt[3]{x^{2/3}+23}$$. Find $$f'(8)$$.

Step 1

Rewrite the function so the cube root is expressed as an exponent.

$$ f(x) = (x^{2/3} + 23)^{1/3} $$

Step 2

Differentiate using the chain rule.

$$ f'(x) = \frac 1 3 (\blue{x^{2/3} + 23})^{-2/3}\cdot \blue{\left(\frac 2 3 x^{-1/3}\right)} $$

Step 3

(Optional) Simplify. Rewrite in terms of radicals and rationalize denominators that need it.

$$ \begin{align*} f'(x) & = \frac 1 3 (x^{2/3} + 23)^{-2/3}\cdot \left(\frac 2 3 x^{-1/3}\right)\\[6pt] & = \frac 2 9 \cdot \frac 1 {(x^{2/3} + 23)^{2/3}}\cdot \frac 1 {x^{1/3}}\\[6pt] & = \frac 2 9 \cdot \frac 1 {\sqrt[3]{(x^{2/3} + 23)^2}}\cdot \frac 1 {\sqrt[3] x}\\[6pt] & = \frac 2 9 \cdot \frac{\sqrt[3]{x^{2/3} + 23}}{x^{2/3} + 23}\cdot \frac{\sqrt[3]{x^2}} x \end{align*} $$

Step 4

Evaluate $$f'(8)$$

$$ \begin{align*} f'(8) & = \frac 2 9 \cdot \frac{\sqrt[3]{8^{2/3} + 23}}{8^{2/3} + 23}\cdot \frac{\sqrt[3]{8^2}} 8\\[6pt] & = \frac 2 9 \cdot \frac{\sqrt[3]{4 + 23}}{4 + 23}\cdot \frac{\sqrt[3]{64}} 8\\[6pt] & = \frac 2 9 \cdot \frac{\sqrt[3]{27}}{27}\cdot \frac{4} 8\\[6pt] & = \frac 2 9 \cdot \frac{3}{27}\cdot \frac{4} 8\\[6pt] & = \frac 1 {81} \end{align*} $$

Answer

$$ \displaystyle f'(8) = \frac 1 {81} $$

Problem 10

Suppose $$\displaystyle f(x) = \frac 3 {\sqrt{1-5x}}$$. Find $$f'(x)$$.

Step 1

Rewrite the function so the square-root is expressed as a negative exponent.

$$ f(x) = \frac 3 {\sqrt{1-5x}} = \frac 3 {(1-5x)^{1/2}} = 3(1-5x)^{-1/2} $$

Step 2

Differentiate using the chain rule.

$$ f'(x) = 3\cdot \left(-\frac 1 2\right)(\blue{1-5x})^{-3/2}\cdot \blue{(-5)} = \frac{15} 2(1-5x)^{-3/2} $$

Step 3

(Optional) Simplify by rewriting in radical form and rationalizing the denominator as necessary.

$$ \begin{align*} f'(x) & = \frac{15} 2(1-5x)^{-3/2}\\[6pt] & = \frac{15}{2(1-5x)^{3/2}}\\[6pt] & = \frac{15}{2\sqrt{(1-5x)^3}}\\[6pt] & = \frac{15}{2(1-5x)\sqrt{1-5x}}\\[6pt] & = \frac{15\sqrt{1-5x}}{2(1-5x)^2} \end{align*} $$

Answer

$$ \displaystyle f'(x) = \frac{15\sqrt{1-5x}}{2(1-5x)^2} $$

Problem 11

Suppose $$f(x) = (6x-5)^{50}$$. Find $$f'(x)$$.

Step 1

Differentiate using the chain rule.

$$ f'(x) = 50(\blue{6x-5})^{49}\cdot \blue 6 = 300(6x-5)^{49} $$

Answer

$$f'(x) = 300(6x-5)^{49}$$

Problem 12

Suppose $$f(x) = (8x^2+3x)^{16}$$. Find $$f'(x)$$.

Step 1

Differentiate using the chain rule.

$$ f'(x) = 16(\blue{8x^2+3x})^{15}\cdot \blue{(16x + 3)} $$

Answer

$$ f'(x) = 16(16x+3)(8x^2+3x)^{15} $$

Problem 13

Suppose $$f(x) = x^2(4x+5)^{13}$$. Find $$f'(x)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{x^2}\red{(4x+5)^{13}} $$

Step 2

Differentiate using the product rule. Notice that differentiating the second factor will require the chain rule.

$$ \begin{align*} f'(x) & = \blue{2x}(4x+5)^{13} + x^2\cdot\red{13(4x+5)^{12}\cdot 4}\\[6pt] & = 2x(4x+5)^{13} + 52x^2(4x+5)^{12} \end{align*} $$

Step 3

(Optional) Simplify by factoring.

$$ \begin{align*} f'(x) & = 2x\blue{(4x+5)^{13}} + 52x^2\blue{(4x+5)^{12}}\\[6pt] & = \blue{(4x+5)^{12}}(2\red x(4x+5) + 52\red{x^2})\\[6pt] & = \red x (4x+5)^{12}(2(4x+5) + 52x)\\[6pt] & = \red x (4x+5)^{12}(8x+10 + 52x)\\[6pt] & = \red x (4x+5)^{12}(60x+10)\\[6pt] & = 10x(4x+5)^{12}(6x+1) \end{align*} $$

Answer

$$ f'(x) = 10x(4x+5)^{12}(6x+1) $$

Problem 14

Suppose $$f(x) = \tan(x^4)\sec(x^2)$$. Find $$f'(x)$$, where $$x$$ is in radians.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{\tan(x^4)}\,\red{\sec(x^2)} $$

Step 2

Differentiate using the product rule. Note that differentiating each factor will require the chain rule.

$$ \begin{align*}% f'(x) & = \blue{\sec(x^4)\cdot (4x^3)}\sec(x^2) + \tan(x^4)\cdot\red{\sec(x^2)\tan(x^2)\cdot 2x}\\[6pt] & = 4x^3\sec(x^4)\,\sec(x^2) + 2x\tan(x^4)\sec(x^2)\tan(x^2) \end{align*} $$

Step 3

(Optional) Simplify by factoring.

$$ \begin{align*} f'(x) & = 4x^3\sec(x^4)\,\blue{\sec(x^2)} + 2x\tan(x^4)\blue{\sec(x^2)}\tan(x^2)\\[6pt] & = \blue{\sec(x^2)}\left(4\red{x^3}\sec(x^4) + 2\red x\tan(x^4)\tan(x^2)\right)\\[6pt] & = \red x\sec(x^2)\left(4x^2\sec(x^4) + 2\tan(x^4)\tan(x^2)\right)\\[6pt] & = 2x\sec(x^2)\left(2x^2\sec(x^4) + \tan(x^4)\tan(x^2)\right) \end{align*} $$

Answer

$$f'(x) = 2x\sec(x^2)\left(2x^2\sec(x^4) + \tan(x^4)\tan(x^2)\right)$$

Problem 15

Suppose $$f(x) = \frac{2x+1}{\sqrt{4x+1}}$$. Find $$f'(x)$$.

Step 1

Rewrite the denominator using exponent notation.

$$ f(x) = \frac{2x+1}{(4x+1)^{1/2}} $$

Step 2

Differentiate using the quotient rule. As in previous lessons, the parts in $$\blue{blue}$$ are associated with the numerator.

Note: differentiating the denominator will require the chain rule.

$$ \begin{align*} f'(x) & = \frac{(4x+1)^{1/2}\cdot \blue 2 - \blue{(2x+1)}\cdot \frac 1 2 (4x+1)^{-1/2}\cdot 4}{\left[(4x+1)^{1/2}\right]^2}\\[6pt] & = \frac{2(4x+1)^{1/2} - 2(2x+1)(4x+1)^{-1/2}}{4x+1} \end{align*} $$

Step 3

Simplify by multiplying the numerator and denominator by $$(4x+1)^{1/2}$$

$$ \begin{align*} f'(x) & = \frac{2(4x+1)^{1/2} - 2(2x+1)(4x+1)^{-1/2}}{(4x+1)} \cdot \blue{\frac{(4x+1)^{1/2}}{(4x+1)^{1/2}}}\\[6pt] & = \frac{2(4x+1) - 2(2x+1)}{(4x+1)^{3/2}}\\[6pt] & = \frac{2(4x+1 - 2x-1)}{(4x+1)^{3/2}}\\[6pt] & = \frac{2(2x)}{(4x+1)^{3/2}}\\[6pt] & = \frac{4x}{(4x+1)^{3/2}} \end{align*} $$

Answer

$$\displaystyle f'(x) = \frac{4x}{(4x+1)^{3/2}}$$

Problem 16

Suppose $$f(x) = \sqrt{\frac{4x+1}{3x-5}}$$. Find $$f'(5)$$.

Step 1

Rewrite the function using exponent notation.

$$ f(x) = \left(\frac{4x+1}{3x-5}\right)^{1/2} $$

Step 2

Differentiate using the chain rule. We're going to break this up into two steps. First we'll take the derivative of the square-root function.

$$ f'(x) = \frac 1 2\left(\frac{4x+1}{3x-5}\right)^{-1/2}\cdot \frac d {dx}\left(\frac{4x+1}{3x-5}\right) $$

Step 3

Now differentiate the quotient using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac 1 2\left(\frac{4x+1}{3x-5}\right)^{-1/2}\cdot \frac d {dx}\left(\frac{4x+1}{3x-5}\right)\\[6pt] & = \frac 1 2\left(\frac{4x+1}{3x-5}\right)^{-1/2}\cdot \left(\frac{(3x-5)\cdot \blue 4 - \blue{(4x+1)}\cdot 3}{(3x-5)^2}\right)\\[6pt] & = \frac 1 2\left(\frac{4x+1}{3x-5}\right)^{-1/2}\cdot \left(\frac{4(3x-5) - 3(4x+1)}{(3x-5)^2}\right) \end{align*} $$

Step 4

Simplify.

$$ \begin{align*} f'(x) & = \frac 1 2\left(\frac{4x+1}{3x-5}\right)^{-1/2}\cdot \left(\frac{4(3x-5) - 3(4x+1)}{(3x-5)^2}\right)\\[6pt] & = \frac 1 2\left(\frac{3x-5}{4x+1}\right)^{1/2}\cdot \left(\frac{12x-20 - 12x-3}{(3x-5)^2}\right)\\[6pt] & = \frac 1 2\sqrt{\frac{3x-5}{4x+1}}\cdot \left(\frac{-23}{(3x-5)^2}\right)\\[6pt] & = -\frac{23}{2(3x-5)^2}\cdot\sqrt{\frac{3x-5}{4x+1}} \end{align*} $$

Step 5

Evaluate $$f'(5)$$

$$ \begin{align*} f'(5) & = -\frac{23}{2[3(5)-5]^2}\cdot\sqrt{\frac{3(5)-5}{4(5)+1}}\\[6pt] & = -\frac{23}{2(10)^2}\cdot\sqrt{\frac{10}{21}}\\[6pt] & = -\frac{23}{200}\cdot\sqrt{\frac{10}{21}}\\[6pt] & \approx 0.079 \end{align*} $$

Answer

$$\displaystyle f'(5) = -\frac{23}{200}\cdot\sqrt{\frac{10}{21}}\approx 0.079$$

Problem 17

Suppose $$f(x) = \sin^2 x$$. Find $$f'(x)$$, where $$x$$ is in radians.

Step 1

Rewrite the function making it easier to see the need for the chain rule.

$$ f(x) = \sin^2 x = (\sin x)^2 $$

Step 2

Differentiate using the chain rule.

$$ f'(x) = 2(\sin x)^1\cdot \cos x = 2\sin x\,\cos x $$

Answer

$$\displaystyle f'(x) = 2\sin x\cos x$$

Problem 18

Suppose $$f(x) = \sec^2(3x)$$. Find $$f'\left(\frac \pi 4\right)$$, where $$x$$ is in radians.

Step 1

Rewrite the function so it is easier to see the need for the chain rule.

$$ f(x) = \sec^2(3x) = (\sec 3x)^2 $$

Step 2

Differentiate using the chain rule.

$$ \begin{align*} f'(x) & = 2(\sec 3x)^1\cdot 3\sec 3x\tan 3x\\[6pt] & = 6\sec 3x\sec 3x\tan 3x\\[6pt] & = 6\sec^2 3x \tan 3x \end{align*} $$

Step 3

Evaluate $$f'\left(\frac\pi 4\right)$$

$$ \begin{align*} f'\left(\frac \pi 4\right) & = 6\sec^2\left(3\cdot \frac \pi 4\right)\tan\left(3\cdot \frac \pi 4\right)\\[6pt] & = 6\left[\sec\left(\frac{3\pi}4\right)\right]^2\tan\left(\frac{3\pi} 4\right)\\[6pt] & = 6\left[-\sqrt 2\right]^2(-1)\\[6pt] & = 6(2)(-1)\\[6pt] & = -12 \end{align*} $$

Answer

$$\displaystyle f'\left(\frac \pi 4\right) = -12$$

Problem 19

Suppose $$f(x) = e^{\sin(x^4)}$$. Find $$f'(x)$$, where $$x$$ is in radians.

Step 1

Differentiate using the chain rule.

$$ f'(x) = e^{\sin(x^4)}\cdot \cos(x^4)\cdot 4x^3 $$

Answer

$$\displaystyle f'(x) = 4x^3\cos(x^4)\,e^{\sin(x^4)}$$

Problem 20

Suppose $$f(x) = \cos^4\left(e^{1-x^2}\right)$$. Find $$f'(x)$$.

Step 1

Rewrite the function to emphasize that the cosine is being raised to the 4th power.

$$ f(x) = \left[\cos\left(e^{1-x^2}\right)\right]^4 $$

Step 2

Differentiate using the chain rule.

$$ \begin{align*} f'(x) & = 4\left[\cos\left(e^{1-x^2}\right)\right]^3\cdot \frac d {dx}\left[\cos\left(e^{1-x^2}\right)\right]\\[6pt] & = 4\cos^3\left(e^{1-x^2}\right)\cdot\sin\left(e^{1-x^2}\right)\cdot \frac d {dx}\left(e^{1-x^2}\right)\\[6pt] & = 4\cos^3\left(e^{1-x^2}\right)\cdot\sin\left(e^{1-x^2}\right)\cdot e^{1-x^2}\cdot \frac d {dx}\left(1-x^2\right)\\[6pt] & = 4\cos^3\left(e^{1-x^2}\right)\cdot\sin\left(e^{1-x^2}\right)\cdot e^{1-x^2}\cdot \left(-2x\right)\\[6pt] & = -8x\cos^3\left(e^{1-x^2}\right)\cdot\sin\left(e^{1-x^2}\right)\cdot e^{1-x^2} \end{align*} $$

Answer

$$\displaystyle f'(x) = -8x\cos^3\left(e^{1-x^2}\right)\cdot\sin\left(e^{1-x^2}\right)\cdot e^{1-x^2}$$

Return to lesson
Download this web page as a pdf with answer key

back to How to Use the Quotient Rule next to How to Find Derivatives of Exponential Functions

Ultimate Math Solver (Free)

Free Algebra Solver ... type anything in there!