How to Differentiate Exponential Functions

How to Differentiate Exponential Functions

Download this web page as a pdf with answer key

Quick Overview

  • $$\displaystyle \frac d {dx}\left(b^{kx}\right) = k\ln b\cdot b^{kx}$$
  • This lesson assumes you are familiar with the $$\blue{power rule}$$, $$\blue{product rule}$$, $$\blue{quotient rule}$$, and $$\blue{chain rule}$$

Examples

Example 1

Find the derivative of $$f(x) = 2^x$$.

Step 1

Change the base to $$e$$

$$ f(x) = \blue 2^x = \blue{(e^{\ln 2})}^x = \blue e^{\blue{(\ln 2)}x} $$

Step 2

Differentiate, recalling that $$\frac d {dx} (e^{kx}) = ke^{kx})$$. In this case, $$k = \ln 2$$.

$$ f'(x) = \ln 2\,e^{(\ln 2)x} $$

Step 3

Convert the base back to 2.

$$ f'(x) = \ln 2\,\blue e^{\blue{(\ln 2)}x} = \ln 2\blue{\left(e^{\ln 2}\right)}^x = \ln 2(\blue 2^x) $$

Answer

$$f'(x) = (\ln 2)\,2^x$$

Example 2

Find the derivative $$f(x) = b^{kx}$$.

Step 1

Change the base to $$e$$.

$$ f(x) = \blue b^{kx} = \blue{\left(e^{\ln b}\right)}^{kx} = \blue e^{\blue{(\ln b)}kx} = e^{(k\ln b)\,x} $$

Step 2

Differentiate.

$$ \begin{align*} f(x) & = e^{(k\ln b)x}\\[6pt] f'(x) & = (k\ln b) e^{(k\ln b)x} \end{align*} $$

Step 3

Convert the base back to $$b$$.

$$ \begin{align*} f'(x) & = (k\ln b) \blue e^{(k\blue{\ln b})x}\\[6pt] & = (k\ln b) \blue e^{\blue{(\ln b)}\,kx}\\[6pt] & = (k\ln b)\blue{\left(e^{\ln b}\right)}^{kx}\\[6pt] & = (k\ln b)\,\blue b^{kx} \end{align*} $$

Answer

The derivative of $$f(x) = b^{kx}$$ is $$\displaystyle (k\ln b)\,b^{kx}$$.

In General

Suppose $$y = b^{\,g(x)}$$. Then the derivative is $$y' = \ln b\cdot g'(x)\cdot b^{\,g(x)}$$.

Practice Problems

Problem 1

Suppose $$f(x) = 4^{9x}$$. Find $$f'(x)$$.

Step 1

Differentiate.

$$ f'(x) = 9\ln 4\cdot 4^{9x} $$

Answer

$$f'(x) = 9\ln 4\cdot 4^{9x}$$

Problem 2

Suppose $$f(x) = 12^{7x}$$. Find $$f'(0)$$.

Step 1

Differentiate.

$$ f'(x) = (7\ln12)\,12^{7x} $$

Step 2

Evaluate $$f'(0)$$.

$$ f'(0) = (7\ln 12)\,12^0 = 7\ln 12 $$

Answer

$$f'(0) = 7\ln 12$$

Problem 3

Suppose $$f(x) = 3^{2x} + 2^{3x}$$. Find $$f'(1)$$.

Step 1

Differentiate each term.

$$ f'(x) = (2\ln 3)\cdot 3^{2x} + (3\ln 2)\cdot 2^{3x} $$

Step 2

Evaluate $$f'(1)$$

$$ \begin{align*}% f'(1) & = (2\ln 3)\cdot 3^{2(1)} + (3\ln 2)\cdot 2^{3(1)}\\[6pt] & = (2\ln 3)\cdot 3^2 + (3\ln 2)\cdot 2^3\\[6pt] & = (2\ln 3)\cdot 9 + (3\ln 2)\cdot 8\\[6pt] & = 18\ln 3 + 24\ln 2\\[6pt] \end{align*} $$

Answer

$$ f'(1) = 18\ln 3 + 24\ln 2 $$

Problem 4

Suppose $$f(x) = 9e^{4x} - 2(5^{8x})$$. Find $$f'(x)$$.

Step 1

Differentiate each term.

$$ \begin{align*}% f'(x) & = 9\cdot 4e^{4x} - 2(8\ln 5)\cdot 5^{8x}\\[6pt] & = 36e^{4x} - (16\ln 5)\cdot 5^{8x} \end{align*} $$

Answer

$$f'(x) = 36e^{4x} - (16\ln 5)\cdot 5^{8x}$$

Problem 5

Suppose $$f(x) = 4x^3(2^{-6x})$$. Find $$f'(x)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{4x^3}\red{(2^{-6x})} $$

Step 2

Differentiate using the product rule.

$$ f'(x) = \blue{12x^2}(2^{-6x}) + 4x^3\red{(-6\ln 2)\cdot 2^{-6x}} $$

Step 3 (Optional)

Simplify by factoring.

$$ \begin{align*} f'(x) & = 12x^2\blue{(2^{-6x})} + 4x^3(-6\ln 2)\cdot \blue{2^{-6x}}\\[6pt] & = \blue{(2^{-6x})}\left[12\red{x^2} + 4\red{x^3}(-6\ln 2)\right]\\[6pt] & = \red{x^2}(2^{-6x})\left[12 + 4x(-6\ln 2)\right]\\[6pt] & = x^2(2^{-6x})\left[12 - (24\ln 2)x\right]\\[6pt] \end{align*} $$

Answer

$$f'(x) = x^2(2^{-6x})\left[12 - (24\ln 2)x\right]$$

Problem 6

Suppose $$f(x) = \sin 9x\,(2^{-0.3x})$$. Find $$f'(x)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{\sin 9x}\,\red{(2^{-0.3x})} $$

Step 2

Differentiate using the product rule.

$$ \begin{align*}% f'(x) & = \blue{9\cos 9x}\,(2^{-0.3x}) + \sin 9x\,\red{(-0.3\ln 2)\cdot 2^{-0.3x}}\\[6pt] & = 9\cos 9x\,(2^{-0.3x}) + (-0.3\ln 2)\sin 9x\cdot 2^{-0.3x}\\[6pt] & = 9\cos 9x\,(2^{-0.3x}) -0.3\ln 2\sin 9x\, (2^{-0.3x}) \end{align*} $$

Step 3

(Optional) Simplify by factoring.

$$ \begin{align*} f'(x) & = 9\cos 9x\,\blue{(2^{-0.3x})} -0.3\ln 2\sin 9x\, \blue{(2^{-0.3x})}\\[6pt] & = \blue{2^{-0.3x}}\left(9\cos 9x - \frac 3 {10}\ln 2\sin 9x\right)\\[6pt] & = \frac 3 {10}(2^{-0.3x})\left(30\cos 9x - \ln 2\sin 9x\right) \end{align*} $$

Answer

$$ \displaystyle f'(x) = \frac 3 {10}(2^{-0.3x})\left(30\cos 9x - \ln 2\sin 9x\right) $$

Problem 7

Suppose $$\displaystyle f(x) = \frac{4^{-2x}}{2+4^{-2x}}$$. Find $$f'(x)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac{(2+4^{-2x})\blue{(-2\ln 4)4^{-2x}} - \blue{4^{-2x}}(-2\ln 4)4^{-2x}}{(2+4^{-2x})^2} \end{align*} $$

Step 2

Simplify using factoring.

$$ \begin{align*} f'(x) & = \frac{(2+4^{-2x})(-2\ln 4)\blue{4^{-2x}} - \blue{4^{-2x}}(-2\ln 4)4^{-2x}}{(2+4^{-2x})^2}\\[6pt] & = \frac{\blue{4^{-2x}}\left[(2+4^{-2x})\red{(-2\ln 4)} - \red{(-2\ln 4)}4^{-2x}\right]}{(2+4^{-2x})^2}\\[6pt] & = \frac{\red{(-2\ln 4)}4^{-2x}\left[(2+4^{-2x}) - 4^{-2x}\right]}{(2+4^{-2x})^2}\\[6pt] & = \frac{(-2\ln 4)4^{-2x}\left[2+4^{-2x} - 4^{-2x}\right]}{(2+4^{-2x})^2}\\[6pt] & = \frac{(-2\ln 4)4^{-2x}(2)}{(2+4^{-2x})^2}\\[6pt] & = -\frac{(4\ln 4)4^{-2x}}{(2+4^{-2x})^2}\\[6pt] \end{align*} $$

Answer

$$\displaystyle f'(x) = -\frac{(4\ln 4)4^{-2x}}{(2+4^{-2x})^2}$$

Problem 8

Suppose $$\displaystyle f(x) = \frac{5^{2x}}{x^2+1}$$. Find $$f'(x)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac{(x^2+1)\blue{(2\ln 5)5^{2x}} - \blue{5^{2x}}\cdot 2x}{(x^2+1)^2} \end{align*} $$

Step 2

Simplify by factoring.

$$ \begin{align*} f'(x) & = \frac{(x^2+1)(2\ln 5)\blue{5^{2x}} - \blue{5^{2x}}\cdot 2x}{(x^2+1)^2}\\[6pt] & = \frac{\blue{5^{2x}}\left[(x^2+1)(\red 2\ln 5) - \red 2x\right]}{(x^2+1)^2}\\[6pt] & = \frac{\red 2 \left(5^{2x}\right)\left[(x^2+1)(\ln 5) - x\right]}{(x^2+1)^2}\\[6pt] & = \frac{2 \left(5^{2x}\right)\left[(\ln 5)x^2 - x +\ln 5\right]}{(x^2+1)^2} \end{align*} $$

Answer

$$\displaystyle f'(x) = \frac{2 \left(5^{2x}\right)\left[(\ln 5)x^2 - x +\ln 5\right]}{(x^2+1)^2}$$

Download this web page as a pdf with answer key

back to How to Use the Quotient Rule next to How to Differentiate Trigonometric Functions

Ultimate Math Solver (Free)

Free Algebra Solver ... type anything in there!