How to Use the Product Rule for Derivatives:
Practice Problems

Download this web page as a pdf with answer key
Problem 1

Suppose $$f(x) = 5x^8\sin 4x$$. Find $$f'(x)$$.

Step 1

Identify the factors in the function.

$$f(x) = \blue{5x^8}\red{\sin 4x}$$

Step 2

Differentiate using the product rule.

$$ \begin{align*} f'(x) & = \blue{40x^7}\sin 4x + 5x^8\red{(4\cos 4x)}\\[6pt] & = 40x^7\sin 4x + 20x^8\cos 4x \end{align*} $$

Answer

$$f'(x) = 40x^7\sin 4x + 20x^8\cos 4x$$

Problem 2

Suppose $$f(x) = \sqrt x\,\sin \pi x$$. Find $$f'\left(\frac 1 4\right)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{\sqrt x}\,\red{\sin \pi x} $$

Step 2

Rewrite the square-root as a power function.

$$ f(x) = \blue{x^{1/2}}\,\red{\sin \pi x} $$

Step 3

Differentiate using the product rule

$$ \begin{align*} f'(x) & = \blue{\frac 1 2 x^{-1/2}}\sin \pi x + x^{1/2}\red{(\pi\cos\pi x)}\\[6pt] & = \frac 1 2 x^{-1/2}\sin \pi x + \pi x^{1/2}\cos\pi x \end{align*} $$

Step 4

(Optional) Rewrite the derivative using radicals.

$$ \begin{align*} f'(x) & = \frac 1 2 x^{-1/2}\sin \pi x + \pi x^{1/2}\cos\pi x\\[6pt] & = \frac 1 2 \cdot \frac 1 {x^{1/2}}\sin \pi x + \pi \sqrt x\,\cos\pi x\\[6pt] & = \frac 1 {2\sqrt x}\sin \pi x + \pi \sqrt x\,\cos\pi x \end{align*} $$

Step 5

Evaluate $$f'\left(\frac 1 4\right)$$.

$$ \begin{align*} f'\left(\frac 1 4\right) & = \frac 1 {2\sqrt{1/4}}\sin \frac \pi 4 + \pi \sqrt{1/4}\,\cos\frac \pi 4\\[6pt] & = \frac 1 {2(1/2)}\left(\frac{\sqrt 2} 2\right) + \pi (1/2)\left(\frac{\sqrt 2} 2\right)\\[6pt] & = \frac{\sqrt 2} 2 + \frac \pi 2\left(\frac{\sqrt 2} 2\right)\\[6pt] & = \frac{\sqrt 2} 2 + \frac{\pi\sqrt 2} 4\\[6pt] & = \frac{2\sqrt 2 + \pi\sqrt 2} 4\\[6pt] & = \frac{\sqrt 2(2 + \pi)} 4 \end{align*} $$

Answer

$$\displaystyle f'\left(\frac 1 4\right) = \frac{\sqrt 2(2 + \pi)} 4 \approx 1.8178$$

Problem 3

Suppose $$f(x) = \frac 2 3 x^{-3/7}\cos x$$. Find $$f'(x)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{\frac 2 3 x^{-3/7}}\red{\cos x} $$

Step 2

Differentiate using the product rule.

$$ \begin{align*} f'(x) & = \blue{\frac 2 3 \left(-\frac 3 7\right)x^{-3/7 -1}}\cos x + \frac 2 3 x^{-3/7}\red{(-\sin x)}\\[6pt] & = -\frac 2 7x^{-10/7}\cos x - \frac 2 3 x^{-3/7}\sin x \end{align*} $$

Answer

$$ \displaystyle f'(x) = -\frac 2 7x^{-10/7}\cos x - \frac 2 3 x^{-3/7}\sin x $$

Problem 4

Suppose $$f(x) = -9x^{11}\cos 2x$$. Find $$f'(1)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{-9x^{11}}\red{\cos 2x} $$

Step 2

Differentiate using the product rule.

$$ \begin{align*} f'(x) & = \blue{-9\left(11x^{10}\right)}\cos 2x + (-9x^{11})\red{(-2\sin 2x)}\\[6pt] & = -99x^{10}\cos 2x + 18x^{11}\sin 2x \end{align*} $$

Step 3

Evaluate $$f'(1)$$.

$$ f'(1) = -99(1)^{10}\cos 2(1) + 18(1)^{11}\sin 2(1) = -99\cos 2 + 18\sin 2\\ \approx 57.5659 $$

Answer

$$f'(1) = -99\cos 2 + 18\sin 2 \approx 57.5659$$

Problem 5

Suppose $$f(x) = x\,e^{2x}$$. Find $$f'(x)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue x\,\red{e^{2x}} $$

Step 2

Differentiate using the product rule.

$$ \begin{align*} f'(x) & = \blue 1\cdot e^{2x} + x\red{(2e^{2x})}\\[6pt] & = e^{2x} + 2xe^{2x} \end{align*} $$

Step 3

(Optional) Factor the derivative.

$$ f'(x) = \blue{e^{2x}} + 2x\blue{e^{2x}} = (1+2x)\blue{e^{2x}} $$

Answer

$$(f'(x) = (1+2x)e^{2x}$$

Problem 6

Suppose $$f(x) = x^5\,e^{-0.4x}$$. Find $$f'(0)$$

Step 1

Identify the factors in the function.

$$ f(x) = \blue{x^5}\,\red{e^{-0.4x}} $$

Step 2

Differentiate using the power rule.

$$ \begin{align*} f'(x) & = \blue{5x^4}\,e^{-0.4x} + x^5\red{(-0.4e^{-0.4x})}\\[6pt] & = 5x^4\,e^{-0.4x} -0.4x^5\,e^{-0.4x} \end{align*} $$

Step 3

(Optional) Factor the derivative.

$$ \begin{align*} f'(x) & = 5x^4\,e^{-0.4x} -0.4x^5\,e^{-0.4x}\\[6pt] & = 5x^4\,e^{-0.4x} -\frac 4 {10}x^5\,e^{-0.4x}\\[6pt] & = 5x^4\blue{e^{-0.4x}} -\frac 2 5x^5\blue{e^{-0.4x}}\\[6pt] & = \blue{e^{-0.4x}}\left(5\red{x^4} -\frac 2 5\red{x^5}\right)\\[6pt] & = \red{x^4}e^{-0.4x}\left(5 -\frac 2 5x\right)\\[6pt] & = \frac 1 5 x^4e^{-0.4x}\left(25 -2x\right)\\[6pt] & = \frac 1 5 x^4(25 -2x)e^{-0.4x} \end{align*} $$

Step 4

Evaluate $$f'(0)$$.

$$ f'(0) = 1 5 (0)^4(25 -2(0))e^{-0.4(0)} = 0 $$

Answer

$$ \displaystyle f'(0) = 0 $$

Problem 7

Suppose $$f(x) = \sin 5x \cos 2x$$. Find $$f'(x)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{\sin 5x}\red{\cos 2x} $$

Step 2

Differentiate using the product rule.

$$ \begin{align*} f'(x) & = \blue{5\cos 5x}\cos 2x + \sin 5x \red{(-2\sin 2x)}\\[6pt] & = 5\cos 5x \cos 2x - 2\sin 5x \sin 2x \end{align*} $$

Answer

$$f'(x) = 5\cos 5x \cos 2x - 2\sin 5x \sin 2x$$

Problem 8

Suppose $$f(x) = \sin\left(\frac \pi 2 x\right) \cos\left(\frac \pi 3 x\right)$$. Find $$f'(4)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{\sin\left(\frac \pi 2 x\right)}\red{\cos\left(\frac \pi 3 x\right)} $$

Step 2

Differentiate using the product rule.

$$ \begin{align*} f'(x) & = \blue{\frac \pi 2\cos\left(\frac \pi 2 x\right)}\cos\left(\frac\pi 3 x\right) + \sin\left(\frac \pi 2 x\right)\red{\left[-\frac \pi 3 \sin\left(\frac \pi 3 x\right)\right]}\\[6pt] & = \frac \pi 2\cos\left(\frac \pi 2 x\right)\cos\left(\frac\pi 3 x\right) -\frac \pi 3 \sin\left(\frac \pi 2 x\right)\sin\left(\frac \pi 3 x\right) \end{align*} $$

Step 3

Evaluate the derivative at $$x = 4$$.

$$ \begin{align*} f'(\blue 4) & = \frac \pi 2\cos\left(\frac{\blue 4\pi} 2\right)\cos\left(\frac{\blue 4 \pi} 3\right) -\frac \pi 3 \sin\left(\frac{\blue 4 \pi} 2\right)\sin\left(\frac{\blue 4 \pi} 3\right)\\[6pt] & = \frac \pi 2\cos(2\pi)\cos\left(\frac{4\pi} 3\right) -\frac \pi 3 \sin(2\pi)\sin\left(\frac{4 \pi} 3\right)\\[6pt] & = \frac \pi 2(1)\left(-\frac 1 2\right) -\frac \pi 3 (0)\left(-\frac{\sqrt 2} 2\right)\\[6pt] & = -\frac \pi 4 \end{align*} $$

Answer

$$\displaystyle f'(4) = -\frac \pi 4$$

Problem 9

Suppose $$f(x) = e^{-3x}\sin 7x$$. Find $$f'(x)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{e^{-3x}}\red{\sin 7x} $$

Step 2

Differentiate using the product rule.

$$ \begin{align*} f'(x) & = \blue{-3e^{-3x}}\sin 7x + e^{-3x}\red{(7\cos 7x)}\\[6pt] & = -3e^{-3x}\sin 7x + 7e^{-3x}\cos 7x \end{align*} $$

Step 3

(Optional) Factor the derivative.

$$ \begin{align*} f'(x) & = -3\blue{e^{-3x}}\sin 7x + 7\blue{e^{-3x}}\cos 7x\\[6pt] & = \blue{e^{-3x}}\left(-3\sin 7x + 7\cos 7x\right)\\[6pt] & = e^{-3x}\left(7\cos 7x-3\sin 7x\right) \end{align*} $$

Answer

$$ f'(x) = e^{-3x}\left(7\cos 7x-3\sin 7x\right) $$

Problem 10

Suppose $$f(x) = e^{-0.5x}\sin 6x$$. Find $$f'(0)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{e^{-0.5x}}\red{\sin 6x} $$

Step 2

Differentiate using the product rule.

$$ \begin{align*} f'(x) & = \blue{-0.5e^{-0.5x}}\sin 6x + e^{-0.5x}\red{(6\cos 6x)}\\[6pt] & = -0.5e^{-0.5x}\sin 6x + 6e^{-0.5x}\cos 6x \end{align*} $$

Step 3

(Optional) Factor the derivative.

$$ \begin{align*} f'(x) & = -0.5\blue{e^{-0.5x}}\sin 6x + 6\blue{e^{-0.5x}}\cos 6x\\[6pt] & = \blue{e^{-0.5x}}\left(-0.5\sin 6x + 6\cos 6x\right)\\[6pt] & = 0.5e^{-0.5x}\left(-\sin 6x + 12\cos 6x\right)\\[6pt] & = 0.5e^{-0.5x}\left(12\cos 6x-\sin 6x\right) \end{align*} $$

Step 4

Evaluate $$f'(0)$$.

$$ \begin{align*} f'(0) & = 0.5e^{-0.5(0)}\left(12\cos 6(0)-\sin 6(0)\right)\\[6pt] & = 0.5e^0\left(12\cos 0-\sin 0\right)\\[6pt] & = 0.5(1)\cdot\left(12(1)-0\right)\\[6pt] & = 0.5(12)\\[6pt] & = 6 \end{align*} $$

Answer

$$ f'(0) = 6 $$

Problem 11

Suppose $$f(x) = e^{12x}\cos\left(\frac \pi 3x\right)$$. Find $$f'(1)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{e^{12x}}\red{\cos\left(\frac \pi 3x\right)} $$

Step 2

Differentiate using the product rule.

$$ \begin{align*} f'(x) & = \blue{12e^{12x}}\cos\left(\frac \pi 3 x\right) + e^{12x}\red{\left(-\frac \pi 3\right)\sin\left(\frac\pi 3 x\right)}\\[6pt] & = 12e^{12x}\cos\left(\frac \pi 3 x\right) -\frac \pi 3 e^{12x}\sin\left(\frac\pi 3 x\right) \end{align*} $$

Step 3

(Optional) Factor the derivative.

$$ \begin{align*} f'(x) & = 12\blue{e^{12x}}\cos\left(\frac \pi 3 x\right) -\frac \pi 3\blue{e^{12x}}\sin\left(\frac\pi 3 x\right)\\[6pt] & = \blue{e^{12x}}\left[12\cos\left(\frac \pi 3 x\right) -\frac \pi 3\sin\left(\frac\pi 3 x\right)\right]\\[6pt] & = \frac 1 3 e^{12x}\left[36\cos\left(\frac \pi 3 x\right) -\pi\sin\left(\frac\pi 3 x\right)\right] \end{align*} $$

Step 4

Evaluate the derivative at $$x = 1$$.

$$ \begin{align*} f'(\blue 1) & = \frac 1 3 e^{12\blue{(1)}}\left[36\cos\left(\frac \pi 3 \blue{(1)}\right) -\pi\sin\left(\frac\pi 3 \blue{(1)}\right)\right]\\[6pt] & = \frac 1 3 e^{12}\left[36\cos\left(\frac \pi 3\right) -\pi\sin\left(\frac\pi 3\right)\right]\\[6pt] & = \frac 1 3 e^{12}\left[36\left(\frac 1 2\right) -\pi\left(\frac{\sqrt 3} 2\right)\right]\\[6pt] & = \frac 1 3 e^{12}\left[18 -\frac{\pi\,\sqrt 3} 2\right]\\[6pt] & \approx 828{,}926.5 \end{align*} $$

Answer

$$f'(1) = \frac 1 3 e^{12}\left[18 -\frac{\pi\,\sqrt 3} 2\right] \approx 828{,}926.5$$

Problem 12

Suppose $$f(x) = e^{-x}\cos \pi x$$. Find $$f'(x)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{e^{-x}}\red{\cos \pi x} $$

Step 2

Differentiate with the product rule.

$$ \begin{align*} f'(x) & = \blue{-e^{-x}}\cos \pi x + e^{-x}\red{(-\pi\sin \pi x)}\\[6pt] & = -e^{-x}\cos \pi x -\pi e^{-x}\sin \pi x \end{align*} $$

Step 3

(Optional) Factor the derivative.

$$ \begin{align*} f'(x) & = -e^{-x}\cos \pi x -\pi e^{-x}\sin \pi x\\[6pt] & = -e^{-x}\left(\cos \pi x + \pi\sin \pi x\right) \end{align*} $$

Answer

$$ f'(x) = -e^{-x}\left(\cos \pi x + \pi\sin \pi x\right) $$

Problem 13

Suppose $$f(x) = 5x^9e^{-3x}\sin 2x$$. Find $$f'(x)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{5x^9}\red{e^{-3x}}\sin 2x $$

Step 2

With three factors, we want to remember that "each factor takes turns being the derivative."

$$ \begin{align*} f'(x) & = \big[\blue{5(9x^8)}e^{-3x}\sin 2x\big] + \big[5x^9\blue{(-3e^{-3x})}\sin 2x\big] + \big[5x^9e^{-3x}\blue{(2\cos 2x)}\big]\\[6pt] & = 45x^8e^{-3x}\sin 2x -15x^9e^{-3x}\sin 2x + 10x^9e^{-3x}\cos 2x \end{align*} $$

Step 3

(Optional) Factor the derivative.

$$ \begin{align*} f'(x) & = 45x^8\blue{e^{-3x}}\sin 2x -15x^9\blue{e^{-3x}}\sin 2x + 10x^9\blue{e^{-3x}}\cos 2x\\[6pt] & = \blue{e^{-3x}}\left(45\red{x^8}\sin 2x -15\red{x^9}\sin 2x + 10\red{x^9}\cos 2x\right)\\[6pt] & = \red{x^8}e^{-3x}\left(45\sin 2x - 15x\sin 2x+ 10x\cos 2x\right)\\[6pt] & = 5x^8e^{-3x}\left(9\sin 2x -3x\sin 2x + 2x\cos 2x\right) \end{align*} $$

Answer

$$ f'(x) = 5x^8e^{-3x}\left(9\sin 2x -3x\sin 2x + 2x\cos 2x\right) $$

Problem 14

Suppose $$f(x) = e^{-0.75x}\sin 4x \cos 8x$$. Find $$f'(0)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{e^{-0.75x}}\,\red{\sin 4x}\,\cos 8x $$

Step 2

Differentiate using the product rule.

$$ \begin{align*} f'(x) & = \blue{(-0.75e^{-0.75x})}\sin 4x\cos 8x + e^{-0.75x}\blue{(4\cos 4x)}\cos 8x + e^{-0.75x}\sin 4x \blue{(-8\sin 8x)}\\[6pt] & = -0.75e^{-0.75x}\sin 4x\cos 8x + 4e^{-0.75x}\cos 4x\cos 8x -8e^{-0.75x}\sin 4x\sin 8x \end{align*} $$

Step 3

(Optional) Factor the derivative.

$$ \begin{align*} f'(x) & = -0.75\blue{e^{-0.75x}}\sin 4x\cos 8x + 4\blue{e^{-0.75x}}\cos 4x\cos 8x -8\blue{e^{-0.75x}}\sin 4x\sin 8x\\[6pt] & = \blue{e^{-0.75x}}\left(-0.75\sin 4x\cos 8x + 4\cos 4x\cos 8x -8\sin 4x\sin 8x\right)\\[6pt] & = \frac 1 4 e^{-0.75x}\left(-3\sin 4x\cos 8x + 16\cos 4x\cos 8x -24\sin 4x\sin 8x\right)\\[6pt] & = \frac 1 4 e^{-0.75x}\left(16\cos 4x\cos 8x -24\sin 4x\sin 8x -3\sin 4x\cos 8x\right) \end{align*} $$

Step 4

Evaluate the derivative at $$x = 0$$.

$$ \begin{align*} f'(\blue 0) & = \frac 1 4 e^{-0.75\blue{(0)}}\left(16\cos 4\blue{(0)}\cos 8\blue{(0)} -24\sin 4\blue{(0)}\sin 8\blue{(0)} -3\sin 4\blue{(0)}\cos 8\blue{(0)}\right)\\[6pt] & = \frac 1 4 e^0\left(16\cos 0\cos 0 -24\sin 0\sin 0 -3\sin 0\cos 0\right)\\[6pt] & = \frac 1 4(1)\left(16(1)(1) -24(0)(0) -3(0)(0)\right)\\[6pt] & = \frac 1 4(16)\\[6pt] & = 4 \end{align*} $$

Answer

$$f'(0) = 4$$

Problem 15

Suppose $$f(x) = \frac 5 8 x^3 e^x\cos x$$. Find $$f'(x)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{\frac 5 8 x^3}\red{e^x}\cos x $$

Step 2

Differentiate using the product rule.

$$ \begin{align*} f'(x) & = \blue{\frac 5 8\left(3 x^2\right)} e^x\cos x + \frac 5 8 x^3\blue{e^x}\cos x + \frac 5 8 x^3 e^x\blue{(-\sin x)}\\[6pt] & = \frac{15} 8x^2e^x\cos x + \frac 5 8 x^3e^x\cos x - \frac 5 8x^3e^x\sin x \end{align*} $$

Step 3

(Optional) Factor the derivative.

$$ \begin{align*} f'(x) & = \frac{15} 8x^2\blue{e^x}\cos x + \frac 5 8 x^3\blue{e^x}\cos x - \frac 5 8x^3\blue{e^x}\sin x\\[6pt] & = \blue{e^x}\left(\frac{15} 8\red{x^2}\cos x + \frac 5 8 \red{x^3}\cos x - \frac 5 8\red{x^3}\sin x\right)\\[6pt] & = \red{x^2}e^x\left(\frac{15} 8\cos x + \frac 5 8 x\cos x - \frac 5 8x\sin x\right)\\[6pt] & = \frac 5 8 x^2e^x\left(3\cos x + x\cos x - x\sin x\right) \end{align*} $$

Answer

$$f'(x) = \frac 5 8 x^2 e^x\left(3\cos x + x\cos x - x\sin x\right)$$

Problem 16

Suppose $$f(x) = 3x^2 e^{-10x}\sin 0.5x$$. Find $$f'(x)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{3x^2}\red{e^{-10x}}\sin 0.5x $$

Step 2

Differentiate using the product rule.

$$ \begin{align*} f'(x) & = \blue{6x}e^{-10x}\sin 0.5x + 3x^2\blue{(-10e^{-10x})}\sin 0.5x + 3x^2e^{-10x}\blue{(0.5\cos 0.5x)}\\[6pt] & = 6xe^{-10x}\sin 0.5x - 30x^2e^{-10x}\sin 0.5x + 1.5x^2e^{-10x}\cos 0.5x \end{align*} $$

Step 3

(Optional) Factor the derivative.

$$ \begin{align*} f'(x) & = 6x\blue{e^{-10x}}\sin 0.5x - 30x^2\blue{e^{-10x}}\sin 0.5x + 1.5x^2\blue{e^{-10x}}\cos 0.5x\\[6pt] & = \blue{e^{-10x}}\left(6\red{x}\sin 0.5x - 30\red{x^2}\sin 0.5x + 1.5\red{x^2}\cos 0.5x\right)\\[6pt] & = \red{x}e^{-10x}\left(6\sin 0.5x - 30x\sin 0.5x + 1.5x\cos 0.5x\right)\\[6pt] & = 1.5xe^{-10x}\left(4\sin 0.5x - 20x\sin 0.5x + x\cos 0.5x\right) \end{align*} $$

Answer

$$f'(x) = 1.5xe^{-10x}\left(4\sin 0.5x - 20x\sin 0.5x + x\cos 0.5x\right)$$

Return to lesson
Download this web page as a pdf with answer key

back to How to Use the Power Rule next to How to Use the Quotient Rule

Ultimate Math Solver (Free)

Free Algebra Solver ... type anything in there!