It's All about complex conjugates and multiplication
To divide complex numbers. First, find the complex conjugate of the denominator, multiply the numerator and denominator by that conjugate and simplify.
To divide complex numbers. First, find the complex conjugate of the denominator, multiply the numerator and denominator by that conjugate and simplify.
Let's divide the following 2 complex numbers
$ \frac{5 + 2i}{7 + 4i} $
Step 1Determine the conjugate of the denominator
The conjugate of $$ (7 + 4i)$$ is $$ (7 \red - 4i)$$.
Step 2Multiply the numerator and denominator by the conjugate.
$ \big( \frac{ 5 + 2i}{ 7 + 4i} \big) \big( \frac{ 7 \red - 4i}{7 \red - 4i} \big) $
Step 3Simplify
$ \big( \frac{ 5 + 2i}{ 7 + 4i} \big) \big( \frac{ 7 \red - 4i}{7 \red - 4i} \big) \\ \boxed{ \frac{ 35 + 14i -20i - 8\red{i^2 } }{ 49 \blue{-28i + 28i}-16 \red{i^2 }} } \\ \frac{ 35 + 14i -20i \red - 8 }{ 49 \blue{-28i + 28i} - \red - 16 } \\ \frac{ 35 + 14i -20i \red - 8 }{ 49 \blue{-28i + 28i} +16 } \\ \frac{ 43 -6i }{ 65 } $
Note: The reason that we use the complex conjugate of the denominator is so that the $$ i $$ term in the denominator "cancels", which is what happens above with the i terms highlighted in blue $$ \blue{-28i + 28i} $$.
Simplify.
$ \big( \frac{ 3 + 5i}{ 2 + 6i} \big) \big( \frac { 2 \red - 6i}{ 2 \red - 6i} \big) \\ \frac{ 6 -18i +10i -30 \red{i^2} }{ 4 \blue{ -12i+12i} -36\red{i^2}} \text{ } _{ \small{ \red { [1] }}} \\ \frac{ 6 -8i \red + 30 }{ 4 \red + 36}= \frac{ 36 -8i }{ 40 } \\ \boxed{ \frac{9 -2i}{10}} $
Simplify.
Simplify.
$ \big( \frac{ 3 -2i}{ 3 + 2i} \big) \big( \frac { 3 \red - 2i}{ 3 \red - 2i} \big) \\ \frac{ 9 \blue{ -6i -6i } + 4 \red{i^2 } }{ 9 \blue{ -6i +6i } - 4 \red{i^2 }} \text{ } _{ \small{ \red { [1] }}} \\ \frac{ 9 \blue{ -12i } -4 }{ 9 + 4 } \\ \frac{ 5 -12i }{ 13 } \\ $
More Like Problem 1.3...
Look carefully at the problems 1.5 and 1.6 below.
Make a Prediction: Do you think that there will be anything special or interesting about either of the following quotients?
Scroll down the page to see the answer (from our free downloadable worksheet ).
$ \frac{ \red 3 - \blue{ 2i}}{\blue{ 2i} - \red { 3} } $
$ \frac{\red 4 - \blue{ 5i}}{\blue{ 5i } - \red{ 4 }} $
Simplify.
$ \big( \frac{ 3 -2i}{ 2i -3 } \big) \big( \frac { 2i \red + 3 }{ 2i \red + 3 } \big) \\ \frac{ \blue{6i } + 9 - 4 \red{i^2 } \blue{ -6i } }{ 4 \red{i^2 } + \blue{6i } - \blue{6i } - 9 } \text{ } _{ \small{ \red { [1] }}} \\ \frac{ 9 + 4 }{ -4 - 9 } \\ \boxed{-1} $
Simplify.
$ \big( \frac{ 4 -5i}{ 5i -4 } \big) \big( \frac { 5i \red + 4 }{ 5i \red + 4 } \big) \\ \frac{\blue{20i} + 16 -25\red{i^2} -\blue{20i}} { 25\red{i^2} + \blue{20i} - \blue{20i} -16} \text{ } _{ \small{ \red { [1] }}} \\ \frac{ 16 + 25 }{ -25 - 16 } \\ \frac{ 41 }{ -41 } \\ \boxed{-1} $
Any rational-expression in the form $$ \frac{y-x}{x-y} $$ is equivalent to $$-1$$.
(with the caveat that $$y-x \ne 0 $$).