Tag Archives: circle graph

3rd Grade Pie Chart Lesson Plan

.

Favorite Colors in the Classroom

Discussion/Introduction

Download Lesson

Our graphing units in third grade used to be focused primarily on circle graphs (pie charts), but under the Common Core, bar charts are given a new prominence. Bar charts are intuitively easy to understand for second and third graders, and since they build on and are closely connected to the number line, they follow logically from the other math your students are doing.

But just because bar charts are taking center stage , doesn’t mean we can stop teaching pie charts altogether. While bar charts make comparing the relative size of parts a simple visual exercise, pie charts offer intuitively obvious visual comparisons between parts and the whole. Teaching circle graphs also enables our students to practice fractions in a fun, easy-to-grasp way.

This lesson plan focuses on gaining a visual understanding of whole-part relationships through the use of a simple circle graph, and also gives students an opportunity to practice fractions , as required by section 3.NF.3 (Number and Operations—Fractions) in the Common Core. “Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.”

Objective

To understand a pie chart (circle graph) and to be able to deduce information about the relative size of the parts shown in it. To be able to compare fractions by reasoning about their size (Common Core 3.NF.3)

Supplies

  • A graph printout from http://www.meta-chart.com/pie, a free pie chart maker
  • Paper cutouts: a large circle cut out of thick white paper, and ½, ¼, and \(  frac{1}{8} \) sectors of circles cut out of different colors of construction paper.
  • Paper and markers/crayons/colored pencils for each student

Methodology/Procedure

Start with a review of fractions. Show the students your white circle, and ask what they think of when they see it. Give them some time to discuss what a circle means to them, and validate their feelings and opinions as they share them. These opinions can be as simple as ‘pizza!’ or as abstruse as ‘unending’; there is no one answer. When they have all had a chance to share how they feel about it, explain that to you, since it is a whole, entire circle, it can mean a ‘whole’ of anything—a whole class of children, a whole country, a whole family, a whole bag of skittles.

Cover half of your circle up with your ½ circle construction paper cut out, and ask how much of the circle is colored now. After the students have answered, tell them that since the whole circle meant to you a whole of anything – a whole class, a whole country, a whole bag of skittles—the colored sections mean, to you, half of anything. Half a bag of skittles, half a class, half a country.

Ask half the class to hold up their hands; the front half, the back half, or the side half. Then tell them that you could use this circle to show how many children had their hands up; the colored section would be the children with their hands up, and the white section would be the other children.

Take off the half circle of construction paper and replace it by the ¼. Ask your students if they know how much of the circle is shaded now. They will probably be ready with the right answer; if anyone is unsure, show that ¼ is half of a half, and that four quarters cover the whole circle. Ask a quarter of the class to raise their hands; you will probably have to mark off the demarcation lines for the quarter. Tell them that if the whole white circle represents the class, that construction paper quarter is the part of the class with their hands up.

Go on to \( frac{1}{8}\), introducing it the same way with your \( frac{1}{8}\) construction paper sector.

Now show the students the graph printout from http://www.meta-chart.com/share/favorite-colors-in-the-classroom and tell them it is a graph which shows the favorite colors in a class of students like yours. Tell them it is called a pie chart, and ask them if they know why.

Favorite Colors in the Classroom

Ask which color is the biggest favorite. Then ask which of the three explicitly listed colors the least amount of children seem like.

Now tell them the class was made up of twenty students, and ask them how many students liked blue. Ask whether fewer or more than six students have green for their favorite color, and whether or not five students have purple for a favorite color. Ask if four students might have purple for a favorite color, and then whether two might have liked purple best.

Now take a poll of favorite colors in your classroom, and put the data on your blackboard. It may look something like this:

  • Blue – Zack, Katie, Markus, Peter–4
  • Green – Jamie, Paul, Christian-3
  • Red – Jordan-1
  • Pink—Mallory, Katie, Jennifer, Desiree, Madeline-5
  • Purple – Desiree -1
  • Yellow—Sofia, Edwin -2

Tell your students you want them each to make a pie graph for you, using this data. Suggest they group the smaller amounts together under ‘other’; in the example above, this would be red, purple and yellow, totaling four. Then start with the color most children like, and ask what fraction of the total number of children like that color. In the example above this would be \( frac{5}{16}\). Help the students relate this to the fractions you’ve already discussed; in this case; just a little more than \( frac{4}{16} = frac{1}{4} \). Have the students color a generous quarter on their circles, and go on to the next color: in this graph, blue, \( frac{4}{16} \) or exactly \(frac{1}{4} \) of a circle.

At this point you don’t want to focus on the nitty gritty—for instance, it would be counterproductive to divide your circle into sixteen, twenty, or thirty equal portions—as many portions as you have students in your class—and make an exact circle graph by coloring in the appropriate number of sectors. Instead, you want to focus on getting an intuitive sense of the size of different fractions. Your students will  do this by relating the fractions they are unsure of—how much is \(frac{5}{16}\), anyway? to what they already know. In this case \( frac{4}{16} = frac{1}{4} \) which is a nice solid quarter, and the \(frac{1}{16}\) it goes over is less than \(frac{1}{8}\), which is a fat sliver.

When your students have all created their own graphs have them take turns explaining what they drew and what different sectors mean. Ask them which color is favorite, which is second favorite, which is third favorite. Ask them how the graphs would change if one child changed his favorite color– for instance, if Madeline decided she preferred blue or Jordan switched to green. Then ask them what would happen to the graph if your class was merged with another third grade class of the same size, and all the children in that class liked yellow best.

These exercises should give your students a new familiarity with and perspective on fractions, as well as  opening the doors to understanding data representation with pie charts.

 

Common Core Standards

This lesson plan is aligned to Standard 3.NF.3 (Third Grade Numbers and Operations– Fractions, item 3 ) in the Common Core. 3.NF.3 reads: “Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.”

Characteristics of Pie Charts

We find pie charts everywhere—history, sociology; even sprinkled liberally over our newspapers. They are the darling of the mass media and a must-have in the business world. At the same time, they scarcely ever find their way into scientific literature and are being sidelined by elementary school curriculum. What is a pie chart, and what is it about pie charts that makes them such a controversial favorite?

Put simply, a pie chart is a circular representation of statistical data—usually fewer than six categories—where the percentages are displayed as sectors of a circle; pieces of the pie. Here is an example of a pie chart which gives the reader information about the party loyalties of the voters in a small town:

Party Loyalty in Village X

The strength of a pie chart is that it offers the reader quick intuitively understandable information about the proportion of parts relative to the whole. A pie graph is not as good at displaying the relative size of sectors as its chief rival, the bar graph.  But there is no representation of a whole on a bar chart at all, and to compare the size of a particular sector to the size of the entire thing you need to mentally superimpose all the bars on each other, and then mentally compare the length of your one bar to the length of that total. All that work for information that’s given you pre-digested on a pie chart.

The bar graph below offers the same information on party loyalties as the pie graph above, but notice how the emphasis  on the relative sizes of the sectors rather than the part-whole relationship gives an entirely different perspective on Village X.

If that were the only difference between pie graphs and bar graphs it might be a toss up as to which was better; six of one, half a dozen and another. But there’s another problem with pie graphs as well. Research shows that we aren’t as good at recognizing the relative size of angles as we are at comparing length, so pie graphs are counter-intuitive to read. What’s even worse is that we estimate angles differently based on where they lie on the circle; and while we over-estimate obtuse angles we under-estimate those that are acute. That makes them very easy to use as a manipulative tool.

Here we’ve got two pie charts  from meta-chart.com representing pre-election poll data in a class. The first has a 25% segment starting at a neat vertical line and taking up a definite quarter; and two other segments that are nearly-quarters, one a bit more, the other a bit less. It is easy to see from this graph what is more, what is less, and what the relative proportions are.

pre-election poll

The second graph has exactly the same data, in exactly the same chart. The only difference is that it has been rotated by a small amount. In this second graph the differences between the three almost-quarters become very vague; any conclusions about which segment is 25%, which is a little more, and which is a little less are hardly more than guesswork.

pre-election poll2

 

Pie charts are best used for applications when you want to show percentages, or the proportion of parts to a whole, for a small number of parts where little differences don’t matter much. Small differences can be displayed on a carefully-made pie chart, but the average reader will skip over them unless they are labeled in an obvious way.  Many sectors can be displayed, but they again require careful labeling and can give the reader an ‘information overload’ effect which counteracts the visually friendly character of your pie graph.

Take this example of favorite foods in a third grade class. You’ll notice that, though the graph is nice to look at, nearly all the information you get from reading the legend. This information could have been displayed just as well on a neat, concise list. The main take-away point your brain registers from the graphic is that a larger proportion of the class prefers ice-cream to any other food; a very small tidbit of information from a very large, cumbersome graph.

sandersonclass

Still, pie graphs aren’t all bad. Used correctly, with an awareness of their limitations, they can deliver a certain amount of readily-digestible information that is easy for the layperson to understand. And, from a pedagogical standpoint, they are a wonderful way to explore fractions and part-whole relationships in multi-member sets.