Derivatives of Basic Functions

Quick Overview

  • The derivative rules are established using the definition.
  • Once we've established the derivative rules, we can use them to find derivatives more efficiently than using the definition each time.
  • The derivative rules include...
    • Derivative of Constants
    • Derivative of the Identity Function
    • Sum Rule
    • Difference Rule
    • Constant Coefficient Rule
    • Derivatives of Linear Functions
    • Derivatives of Sines, Cosines and Exponential

Derivatives of Constants

Find $$\displaystyle \frac d {dx} \left(k\right)$$

Step 1

Evaluate the definition of the derivative.

$$ \\ \begin{align*} \frac d {dx}\left(k\right) & = \lim_{h\to0} \frac{\blue{f(x+h)} - \red{f(x)}} h\\[6pt] & = \lim_{h\to0} \frac{\blue{k} - \red{k}} h\\[6pt] & = \lim_{h\to0} \frac 0 h\\[6pt] & = \lim_{h\to0} 0\\[6pt] & = 0 \end{align*} \\ $$

Answer

$$\displaystyle \frac d {dx}\left(k\right) = 0$$

Derivative of the Identity Function

Recall that the identity function is $$f(x) = x$$. Find $$f'(x)$$

Step 1

Evaluate the functions in the definition of the derivative. Then simplify.

$$ \begin{align*} f'(x) & = \lim_{h\to 0} \frac{\blue{f(x+h)} -\red{f(x)}} h\\[6pt] & = \lim_{h\to 0} \frac{\blue{x+h} -\red x} h\\[6pt] & = \lim_{h\to 0} \frac h h\\[6pt] & = \lim_{h\to 0} 1\\[6pt] & = 1 \end{align*} $$

Answer

$$f'(x) = 1$$ when $$f(x) = x$$

Sum Rule for Derivatives

Suppose $$f(x)$$ and $$g(x)$$ are differentiable1 and $$h(x) = f(x) + g(x)$$. Find $$h'(x)$$.

1If a function is differentiable, then its derivative exists.

Step 1

Evaluate the functions in the definition of the derivative

$$ \begin{align*} h'(x) & = \lim_{\Delta x\to 0} \frac{\blue{h(x+\Delta x)} - \red{h(x)}}{\Delta x}\\[6pt] & = \lim_{\Delta x\to 0} \frac{\blue{f(x+\Delta x)+g(x+\Delta x)} - \red{[f(x)+g(x)]}}{\Delta x}\\[6pt] & = \lim_{\Delta x\to 0} \frac{\blue{f(x+\Delta x)+g(x+\Delta x)} - \red{f(x)-g(x)}}{\Delta x} \end{align*} $$

Step 2

Rearrange the numerator so that the $$f$$ terms are together and the $$g$$ terms are together.

$$ \begin{align*} h'(x) & = \lim_{\Delta x\to 0} \frac{\blue{f(x+\Delta x)}+\red{g(x+\Delta x)} - \blue{f(x)}-\red{g(x)}}{\Delta x}\\[6pt] & = \lim_{\Delta x\to 0} \frac{\blue{f(x+\Delta x)} - \blue{f(x)}+\red{g(x+\Delta x)}-\red{g(x)}}{\Delta x} \end{align*} $$

Step 3

Split into two limits. One containing the $$f$$ terms, the other containing the $$g$$ terms.

$$ \begin{align*} h'(x) & = \lim_{\Delta x\to 0} \frac{\blue{f(x+\Delta x) - f(x)}+\red{g(x+\Delta x)-g(x)}}{\Delta x}\\[6pt] & = \lim_{\Delta x\to 0} \left(\frac{\blue{f(x+\Delta x) - f(x)}}{\blue{\Delta x}}+\frac{\red{g(x+\Delta x)-g(x)}}{\red{\Delta x}}\right)\\[6pt] & = \lim_{\Delta x\to 0}\frac{\blue{f(x+\Delta x) - f(x)}}{\blue{\Delta x}}+ \lim_{\Delta x\to 0}\frac{\red{g(x+\Delta x)-g(x)}}{\red{\Delta x}} \end{align*} $$

Step 4

Evaluate each limit.

Notice that the first limit is exactly the definition of $$f'(x)$$ and the second limit is the definition of $$g'(x)$$

$$ \begin{align*} h'(x) & = \blue{\lim_{\Delta x\to 0}\frac{f(x+\Delta x) - f(x)}{\Delta x}}+ \red{\lim_{\Delta x\to 0}\frac{g(x+\Delta x)-g(x)}{\Delta x}}\\[6pt] & = \blue{f'(x)}+ \red{g'(x)} \end{align*} $$

Summary of the Rule: $$\displaystyle \frac d{dx}\left( f(x) + g(x)\right) = f'(x) + g'(x)$$

Difference Rule for Derivatives

Suppose $$f(x)$$ and $$g(x)$$ are differentiable and $$h(x) = f(x) - g(x)$$. Find $$h'(x)$$.

Step 1

Evaluate the functions in the definition of the derivative.

$$ \begin{align*} \frac d {dx}\left(f(x) - g(x)\right) & = \lim_{\Delta x\to 0} \frac{\blue{h(x+\Delta x)} - \red{h(x)}}{\Delta x}\\[6pt] & = \lim_{\Delta x\to 0} \frac{\blue{f(x+\Delta x) - g(x+\Delta x)} - (\red{f(x)-g(x)})}{\Delta x}\\[6pt] & = \lim_{\Delta x\to 0} \frac{\blue{f(x+\Delta x) - g(x+\Delta x)} - \red{f(x) + g(x)}}{\Delta x} \end{align*} $$

Step 2

Group the $$f$$ terms and the $$g$$ terms.

$$ \begin{align*} \frac d {dx}\left(f(x) - g(x)\right) & = \lim_{\Delta x\to 0} \frac{\blue{f(x+\Delta x)} - \red{g(x+\Delta x)} - \blue{f(x)} + \red{g(x)}}{\Delta x}\\[6pt] & = \lim_{\Delta x\to 0} \frac{\blue{f(x+\Delta x)} - \blue{f(x)} - \red{g(x+\Delta x)} + \red{g(x)}}{\Delta x} \end{align*} $$

Step 3

Separate into two limits.

$$ \begin{align*} \frac d {dx}\left(f(x) - g(x)\right) & = \lim_{\Delta x\to 0} \frac{\blue{f(x+\Delta x) - f(x)} \red{\,-\,g(x+\Delta x) + g(x)}}{\Delta x}\\[6pt] & = \lim_{\Delta x\to 0} \left(\blue{\frac{f(x+\Delta x) - f(x)}{\Delta x}} + \red{\frac{- g(x+\Delta x) + g(x)}{\Delta x}}\right)\\[6pt] & = \lim_{\Delta x\to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x} + \lim_{\Delta x\to 0} \frac{- g(x+\Delta x) + g(x)}{\Delta x}\\[6pt] & = \blue{\lim_{\Delta x\to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}} - \red{\lim_{\Delta x\to 0} \frac{g(x+\Delta x) - g(x)}{\Delta x}} \end{align*} $$

Step 4

Evaluate each limit.

Note that the first limit is precisely the definition of $$f'(x)$$ while the second limit is the definition of $$g'(x)$$.

$$ \begin{align*} \frac d {dx}\left(f(x) - g(x)\right) & = \blue{\lim_{\Delta x\to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}} - \red{\lim_{\Delta x\to 0} \frac{g(x+\Delta x) - g(x)}{\Delta x}}\\[6pt] & = \blue{f'(x)} - \red{g'(x)} \end{align*} $$

Summary of the Rule: $$\displaystyle \frac d {dx}\left(f(x)-g(x)\right) = f'(x) - g'(x)$$

Constant Coefficient Rule

Suppose $$f(x)$$ is differentiable and $$g(x) = k\cdot f(x)$$. Find $$g'(x)$$.

Step 1

Evaluate the functions in the definition of the derivative.

$$ \begin{align*} g'(x) & = \lim_{x\to h} \frac{\blue{g(x+h)} - \red{g(x)}} h\\[6pt] & = \lim_{x\to h} \frac{\blue{k\cdot f(x+h)} - \red{k\cdot f(x)}} h \end{align*} $$

Step 2

Factor out the $$k$$ and then evaluate the limit.

$$ \begin{align*} g'(x) & = \lim_{x\to h} \frac{\blue k\cdot f(x+h) - \blue k\cdot f(x)} h\\[6pt] & = \lim_{x\to h} \blue k \cdot \frac{f(x+h) - f(x)} h\\[6pt] & = \blue k\cdot \lim_{x\to h} \frac{f(x+h) - f(x)} h\\[6pt] & = \blue k\cdot f'(x) \end{align*} $$

Summary of Rule: $$\displaystyle \frac d {dx}\left(k\cdot f(x)\right) = k\cdot f'(x)$$

Derivatives of Linear Functions

Find $$\displaystyle \frac d {dx}\left(mx + b\right)$$.

Step 1

Evaluate the functions in the definition of the derivative, and simplify.

$$ \begin{align*} \frac d {dx}\left(mx + b\right) & = \lim_{h\to 0} \frac{\blue{f(x+h)}-\red{f(x)}} h\\[6pt] & = \lim_{h\to 0} \frac{\blue{m(x+h)+ b}-(\red{mx+b})} h\\[6pt] & = \lim_{h\to 0} \frac{\blue{mx+mh+ b}-\red{mx-b}} h \\[6pt] & = \lim_{h\to 0} \frac{mh} h\\[6pt] & = \lim_{h\to 0} m \end{align*} $$

Step 2

Evaluate the limit.

$$ \frac d {dx}\left(mx + b\right) = \displaystyle\lim_{h\to 0} m = m $$

Summary of Rule: $$\displaystyle \frac d {dx}\left(mx + b\right) = m$$ (The derivative of a linear function is just its slope.)

Derivative of the $$y = \sin kx$$

Find $$\frac d {dx}\left(\sin kx\right)$$.

Step 1

Evaluate the functions in the definition of the derivative.

$$ \begin{align*} \frac d {dx}\left(\sin kx\right) & = \lim_{h\to 0} \frac{\blue{f(x + h)} - \red{f(x)}} h\\[6pt] & = \lim_{h\to 0} \frac{\blue{\sin(k(x + h))} - \red{\sin kx}} h\\[6pt] & = \lim_{h\to 0} \frac{\blue{\sin(kx + kh)} - \red{\sin kx}} h \end{align*} $$

Step 2

Expand the sine function using the Sum of Angles for the Sine.

$$ \begin{align*} \frac d {dx}\left(\sin kx\right) & = \lim_{h\to 0} \frac{\sin(\blue{kx} + \red{kh}) - \sin kx} h\\[6pt] & = \lim_{h\to 0} \frac{\sin\blue{kx}\cos\red{kh} + \sin\red{kh}\cos\blue{kx} - \sin kx} h \end{align*} $$

Step 3

Rearrange the numerator so you can factor out the $$\sin kx$$.

$$ \begin{align*} \frac d {dx}\left(\sin kx\right) & = \lim_{h\to 0} \frac{\blue{\sin kx}\cos kh + \sin kh\cos kx - \blue{\sin kx}} h\\[6pt] & = \lim_{h\to 0} \frac{\blue{\sin kx}\cos kh - \blue{\sin kx} + \sin kh\cos kx} h\\[6pt] & = \lim_{h\to 0} \frac{\blue{\sin kx}\left(\cos kh - 1\right) + \sin kh\cos kx} h \end{align*} $$

Step 4

Separate into two limits. Factor out the terms that do not involve $$h$$.

$$ \begin{align*} \frac d {dx}\left(\sin kx\right) & = \lim_{h\to 0} \frac{\blue{\sin kx}\left(\cos kh - 1\right) + \sin kh\,\red{\cos kx}} h\\[6pt] & = \lim_{h\to 0} \left(\frac{\blue{\sin kx}\left(\cos kh - 1\right)} h + \frac{\sin kh\,\red{\cos kx}} h\right)\\[6pt] & = \lim_{h\to 0} \frac{\blue{\sin kx}\left(\cos kh - 1\right)} h + \lim_{h\to 0} \frac{\sin kh\,\red{\cos kx}} h\\[6pt] & = \blue{\sin kx}\cdot \lim_{h\to 0} \frac{\cos kh - 1} h + \red{\cos kx}\cdot \lim_{h\to 0} \frac{\sin kh} h \end{align*} $$

Step 5

Evaluate each limit.

$$ \begin{align*} \frac d {dx}\left(\sin kx\right) & = \sin kx\cdot \blue{\lim_{h\to 0} \frac{\cos kh - 1} h} + \cos kx\cdot \red{\lim_{h\to 0} \frac{\sin kh} h}\\[6pt] & = \sin kx\cdot \blue{(0)} + \cos kx\cdot \red{\lim_{h\to 0} \frac k k \cdot \frac{\sin kh} h}\\[6pt] & = \red k \cos kx\cdot \red{\lim_{h\to 0} \frac{\sin kh} {kh}}\\[6pt] & = k \cos kx\cdot \red{(1)}\\[6pt] & = k \cos kx \end{align*} $$

Summary of Rule: $$\displaystyle \frac d {dx}\left(\sin kx\right) = k\cos kx$$

Derivative of $$y = \cos kx$$

Find $$\frac d {dx}\left(\cos kx\right)$$.

Step 1

Evaluate the functions in the definition of the derivative.

$$ \begin{align*} \frac d {dx}\left(\cos kx\right) & = \lim_{h\to 0} \frac{\blue{f(x + h)} - \red{f(x)}} h\\[6pt] & = \lim_{h\to 0} \frac{\blue{\cos(k(x + h))} - \red{\cos(kx)}} h\\[6pt] & = \lim_{h\to 0} \frac{\blue{\cos(kx + kh)} - \red{\cos(kx)}} h \end{align*} $$

Step 2

Expand the cosine function using the Sum of Angles for the Cosine.

$$ \begin{align*} \frac d {dx}\left(\cos kx\right) & = \lim_{h\to 0} \frac{\cos(\blue{kx} + \red{kh}) - \cos(kx)} h\\[6pt] & = \lim_{h\to 0} \frac{\cos\blue{kx}\cos \red{kh} - \sin\blue{kx}\sin\red{kh} - \cos kx} h \end{align*} $$

Step 3

Rearrange the numerator and factor out the $$\cos kx$$.

$$ \begin{align*} \frac d {dx}\left(\cos kx\right) & = \lim_{h\to 0} \frac{\blue{\cos kx}\cos kh - \sin kx\sin kh - \blue{\cos kx}} h\\[6pt] & = \lim_{h\to 0} \frac{\blue{\cos kx}\cos kh - \blue{\cos kx} - \sin kx\sin kh} h\\[6pt] & = \lim_{h\to 0} \frac{\blue{\cos kx}(\cos kh - 1) - \sin kx\sin kh} h \end{align*} $$

Step 4

Separate into two limits. Factor out the terms not involving $$h$$.

$$ \begin{align*} \frac d {dx}\left(\cos kx\right) & = \lim_{h\to 0} \frac{\blue{\cos kx}(\cos kh - 1) - \red{\sin kx}\sin kh} h\\[6pt] & = \lim_{h\to 0} \left(\frac{\blue{\cos kx}(\cos kh - 1)} h - \frac{\red{\sin kx}\sin kh} h\right)\\[6pt] & = \lim_{h\to 0} \frac{\blue{\cos kx}(\cos kh - 1)} h - \lim_{h\to 0} \frac{\red{\sin kx}\sin kh} h\\[6pt] & = \blue{\cos kx}\cdot\lim_{h\to 0} \frac{\cos kh - 1} h - \red{\sin kx}\cdot\lim_{h\to 0} \frac{\sin kh} h \end{align*} $$

Step 5

Evaluate each limit.

$$ \begin{align*} \frac d {dx}\left(\cos kx\right) & = \cos kx \cdot\blue{\lim_{h\to 0} \frac{\cos kh - 1} h} - \sin kx \cdot\red{\lim_{h\to 0} \frac{\sin kh} h}\\[6pt] & = \cos kx \cdot\blue{(0)} - \sin kx \cdot\red{\lim_{h\to 0} \frac k k\cdot \frac{\sin kh} h}\\[6pt] & = \cos kx \cdot\blue{(0)} - \red k\sin kx \cdot\red{\lim_{h\to 0} \frac{\sin kh} {kh}}\\[6pt] & = - k\sin kx \cdot\red{(1)}\\[6pt] & = - k\sin kx \end{align*} $$

Summary of Rule: $$\displaystyle \frac d {dx}\left(\cos kx\right) = -k\sin kx$$

Derivative of $$y = e^{kx}$$

Find $$\frac d {dx}\left(e^{kx}\right)$$.

Step 1

Evaluate the functions in the definition of the derivative.

$$ \begin{align*} \frac d {dx}\left(e^{kx}\right) & = \lim_{h\to 0} \frac{\blue{f(x + h)} - \red{f(x)}} h\\[6pt] & = \lim_{h\to 0} \frac{\blue{e^{k(x+h)}} - \red{e^{kx}}} h\\[6pt] & = \lim_{h\to 0} \frac{\blue{e^{kx+kh}} - \red{e^{kx}}} h \end{align*} $$

Step 2

Use the properties of exponents to simplify the numerator.

$$ \begin{align*} \frac d {dx}\left(e^{kx}\right) & = \lim_{h\to 0} \frac{e^{\blue{kx}+\red{kh}} - e^{kx}} h\\[6pt] & = \lim_{h\to 0} \frac{e^{\blue{kx}}\cdot e^{\red{kh}} - e^{kx}} h \end{align*} $$

Step 3

Factor out the $$e^{kx}$$ terms.

$$ \begin{align*} \frac d {dx}\left(e^{kx}\right) & = \lim_{h\to 0} \frac{\blue{e^{kx}}\cdot e^{kh} - \blue{e^{kx}}} h\\[6pt] & = \lim_{h\to 0} \frac{\blue{e^{kx}}\left(e^{kh} - 1\right)} h\\[6pt] & = \blue{e^{kx}}\cdot \lim_{h\to 0} \frac{e^{kh} - 1} h \end{align*} $$

Step 4

Evaluate the limit using the techniques from the lesson on Indeterminate Limits---Exponential Forms.

$$ \begin{align*} \frac d {dx}\left(e^{kx}\right) & = e^{kx}\cdot \lim_{h\to 0} \frac{e^{kh} - 1} h\\[6pt] & = e^{kx}\cdot \lim_{h\to 0}\blue{\frac k k}\cdot \frac{e^{kh} - 1} h\\[6pt] & = \blue k e^{kx}\cdot \lim_{h\to 0}\frac{e^{kh} - 1}{\blue k h}\\[6pt] & = ke^{kx}\cdot \blue{\lim_{h\to 0}\frac{e^{kh} - 1} {kh}}\\[6pt] & = ke^{kx}\blue{(1)}\\[6pt] & = ke^{kx} \end{align*} $$

Summary of Rule: $$\displaystyle \frac d {dx}\left(e^{kx}\right) = ke^{kx}$$

List of Basic Derivatives

Suppose $$f(x)$$ and $$g(x)$$ are differentiable functions and $$k$$ is a constant. Then...

  • Derivative of a Constant: $$\displaystyle \frac d {dx} \left( k \right) = 0$$
  • Derivative of the Identity Function: $$\displaystyle \frac d {dx} \left( x \right) = 1$$
  • Derivative of a Sum: $$\displaystyle \frac d {dx} \left( f(x) + g(x) \right) = f'(x) + g'(x)$$
  • Derivative of a Difference: $$\displaystyle \frac d {dx} \left( f(x) - g(x) \right) = f'(x) - g'(x)$$
  • Derivatives with Constant Coefficients: $$\displaystyle \frac d {dx} \left( k\cdot f(x) \right) = k\cdot f'(x)$$
  • Derivative of a Linear Function: $$\displaystyle \frac d {dx} \left( mx + b \right) = m$$
  • Derivative of the Sine Function: $$\displaystyle \frac d {dx} \left( \sin kx \right) = k\cos kx$$
  • Derivative of the Cosine Function: $$\displaystyle \frac d {dx} \left( \cos kx \right) = -k\sin kx$$
  • Derivative of the Exponential Function: $$\displaystyle \frac d {dx} \left( e^{kx} \right) = ke^{kx}$$
Download this web page as a pdf with answer key

back to How to Use the Definition of the Derivative next to How to Find Derivatives of Basic Functions

Ultimate Math Solver (Free)

Free Algebra Solver ... type anything in there!